1
|
Bleckmann H. The incomparable fascination of comparative physiology: 40 years with animals in the field and laboratory. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:211-226. [PMID: 37987801 PMCID: PMC10995018 DOI: 10.1007/s00359-023-01681-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
This paper is not meant to be a review article. Instead, it gives an overview of the major research projects that the author, together with his students, colleagues and collaborators, has worked on. Although the main focus of the author's work has always been the fish lateral line, this paper is mainly about all the other research projects he did or that were done in his laboratory. These include studies on fishing spiders, weakly electric fish, seals, water rats, bottom dwelling sharks, freshwater rays, venomous snakes, birds of prey, fire loving beetles and backswimmers. The reasons for this diversity of research projects? Simple. The authors's lifelong enthusiasm for animals, and nature's ingenuity in inventing new biological solutions. Indeed, this most certainly was a principal reason why Karl von Frisch and Alfred Kühn founded the Zeitschrift für vergleichende Physiologie (now Journal of Comparative Physiology A) 100 years ago.
Collapse
Affiliation(s)
- Horst Bleckmann
- Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, Bonn, Germany.
| |
Collapse
|
2
|
Smart sharks: a review of chondrichthyan cognition. Anim Cogn 2023; 26:175-188. [PMID: 36394656 PMCID: PMC9877065 DOI: 10.1007/s10071-022-01708-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
Abstract
450 million years of evolution have given chondrichthyans (sharks, rays and allies) ample time to adapt perfectly to their respective everyday life challenges and cognitive abilities have played an important part in that process. The diversity of niches that sharks and rays occupy corresponds to matching diversity in brains and behaviour, but we have only scratched the surface in terms of investigating cognition in this important group of animals. The handful of species that have been cognitively assessed in some detail over the last decade have provided enough data to safely conclude that sharks and rays are cognitively on par with most other vertebrates, including mammals and birds. Experiments in the lab as well as in the wild pose their own unique challenges, mainly due to the handling and maintenance of these animals as well as controlling environmental conditions and elimination of confounding factors. Nonetheless, significant advancements have been obtained in the fields of spatial and social cognition, discrimination learning, memory retention as well as several others. Most studies have focused on behaviour and the underlying neural substrates involved in cognitive information processing are still largely unknown. Our understanding of shark cognition has multiple practical benefits for welfare and conservation management but there are obvious gaps in our knowledge. Like most marine animals, sharks and rays face multiple threats. The effects of climate change, pollution and resulting ecosystem changes on the cognitive abilities of sharks and stingrays remain poorly investigated and we can only speculate what the likely impacts might be based on research on bony fishes. Lastly, sharks still suffer from their bad reputation as mindless killers and are heavily targeted by commercial fishing operations for their fins. This public relations issue clouds people's expectations of shark intelligence and is a serious impediment to their conservation. In the light of the fascinating results presented here, it seems obvious that the general perception of sharks and rays as well as their status as sentient, cognitive animals, needs to be urgently revisited.
Collapse
|
3
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition: Neuronal Prerequisites Supporting Cognitive Mate Choice. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across taxa, mate choice is a highly selective process involving both intra- and intersexual selection processes aiming to pass on one’s genes, making mate choice a pivotal tool of sexual selection. Individuals adapt mate choice behavior dynamically in response to environmental and social changes. These changes are perceived sensorily and integrated on a neuronal level, which ultimately leads to an adequate behavioral response. Along with perception and prior to an appropriate behavioral response, the choosing sex has (1) to recognize and discriminate between the prospective mates and (2) to be able to assess and compare their performance in order to make an informed decision. To do so, cognitive processes allow for the simultaneous processing of multiple information from the (in-) animate environment as well as from a variety of both sexual and social (but non-sexual) conspecific cues. Although many behavioral aspects of cognition on one side and of mate choice displays on the other are well understood, the interplay of neuronal mechanisms governing both determinants, i.e., governing cognitive mate choice have been described only vaguely. This review aimed to throw a spotlight on neuronal prerequisites, networks and processes supporting the interaction between mate choice, sex roles and sexual cognition, hence, supporting cognitive mate choice. How does neuronal activity differ between males and females regarding social cognition? Does sex or the respective sex role within the prevailing mating system mirror at a neuronal level? How does cognitive competence affect mate choice? Conversely, how does mate choice affect the cognitive abilities of both sexes? Benefitting from studies using different neuroanatomical techniques such as neuronal activity markers, differential coexpression or candidate gene analyses, modulatory effects of neurotransmitters and hormones, or imaging techniques such as fMRI, there is ample evidence pointing to a reflection of sex and the respective sex role at the neuronal level, at least in individual brain regions. Moreover, this review aims to summarize evidence for cognitive abilities influencing mate choice and vice versa. At the same time, new questions arise centering the complex relationship between neurobiology, cognition and mate choice, which we will perhaps be able to answer with new experimental techniques.
Collapse
|
4
|
Rodríguez-Moldes I, Quintana-Urzainqui I, Santos-Durán GN, Ferreiro-Galve S, Pereira-Guldrís S, Candás M, Mazan S, Candal E. Identifying Amygdala-Like Territories in Scyliorhinus canicula (Chondrichthyan): Evidence for a Pallial Amygdala. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:283-304. [PMID: 34662880 DOI: 10.1159/000519221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
To identify the putative amygdalar complex in cartilaginous fishes, our first step was to obtain evidence that supports the existence of a pallial amygdala in the catshark Scyliorhinus canicula, at present the prevailing chondrichthyan model in comparative neurobiology and developmental biology. To this end, we analyzed the organization of the lateral walls of the telencephalic hemispheres of adults, juveniles, and early prehatching embryos by immunohistochemistry against tyrosine hydroxylase (TH), somatostatin (SOM), Pax6, serotonin (5HT), substance P (SP), and Met-enkephalin (MetEnk), calbindin-28k (CB), and calretinin (CR), and by in situ hybridization against regulatory genes such as Tbr1, Lhx9, Emx1, and Dlx2. Our data were integrated with those available from the literature related to the secondary olfactory projections in this shark species. We have characterized two possible amygdalar territories. One, which may represent a ventropallial component, was identified by its chemical signature (moderate density of Pax6-ir cells, scarce TH-ir and SOM-ir cells, and absence of CR-ir and CB-ir cells) and gene expressions (Tbr1 and Lhx9 expressions in an Emx1 negative domain, as the ventral pallium of amniotes). It is perhaps comparable to the lateral amygdala of amphibians and the pallial amygdala of teleosts. The second was a territory related to the pallial-subpallial boundary with abundant Pax6-ir and CR-ir cells, and 5HT-ir, SP-ir, and MetEnk-ir fibers capping dorsally the area superficialis basalis. This olfactory-related region at the neighborhood of the pallial-subpallial boundary may represent a subpallial amygdala subdivision that possibly contains migrated cells of ventropallial origin.
Collapse
Affiliation(s)
- Isabel Rodríguez-Moldes
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Idoia Quintana-Urzainqui
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Developmental Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gabriel Nicolás Santos-Durán
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Susana Ferreiro-Galve
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Santiago Pereira-Guldrís
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Candás
- REBUSC-Marine Biology Station of A Graña, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Sylvie Mazan
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls, France
| | - Eva Candal
- Grupo Neurodevo,Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Neural substrates involved in the cognitive information processing in teleost fish. Anim Cogn 2021; 24:923-946. [PMID: 33907938 PMCID: PMC8360893 DOI: 10.1007/s10071-021-01514-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 02/04/2023]
Abstract
Over the last few decades, it has been shown that fish, comprising the largest group of vertebrates and in many respects one of the least well studied, possess many cognitive abilities comparable to those of birds and mammals. Despite a plethora of behavioural studies assessing cognition abilities and an abundance of neuroanatomical studies, only few studies have aimed to or in fact identified the neural substrates involved in the processing of cognitive information. In this review, an overview of the currently available studies addressing the joint research topics of cognitive behaviour and neuroscience in teleosts (and elasmobranchs wherever possible) is provided, primarily focusing on two fundamentally different but complementary approaches, i.e. ablation studies and Immediate Early Gene (IEG) analyses. More recently, the latter technique has become one of the most promising methods to visualize neuronal populations activated in specific brain areas, both during a variety of cognitive as well as non-cognition-related tasks. While IEG studies may be more elegant and potentially easier to conduct, only lesion studies can help researchers find out what information animals can learn or recall prior to and following ablation of a particular brain area.
Collapse
|
6
|
Wang M, Han Y, Wang X, Liang S, Bo C, Zhang Z, Wang M, Xu L, Zhang D, Liu W, Wang H. Characterization of EGR-1 Expression in the Auditory Cortex Following Kanamycin-Induced Hearing Loss in Mice. J Mol Neurosci 2021; 71:2260-2274. [PMID: 33423191 DOI: 10.1007/s12031-021-01791-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/02/2021] [Indexed: 10/22/2022]
Abstract
Deprivation of acoustic input during a critical period leads to abnormal auditory development in humans. The molecular basis underlying the susceptibility of auditory cortex to loss of afferent input remains largely unknown. The transcription factor early growth response-1 (EGR-1) expression in the visual cortex has been shown to be crucial in the formation of vision, but the role of EGR-1 during the process of auditory function formation is still unclear. In this study, we presented data showing that EGR-1 was expressed in the neurons of the primary auditory cortex (A1) in mice. We observed that the auditory deprivation induced by kanamycin during the auditory critical period leads to laminar-specific alteration of neuronal distribution and EGR-1 expression in A1. In addition, MK-801 administration inhibited the expression of EGR-1 in A1 and aggravated the abnormal cortical electric response caused by kanamycin injection. Finally, we showed that the expression of PI3K, the phosphorylation of Akt, as well as the phosphorylation of cAMP-responsive element-binding protein (CREB) were decreased in A1 after kanamycin-induced hearing loss. These results characterized the expression of EGR-1 in A1 in response to the acoustic input and suggested the involvement of EGR-1 in auditory function formation.
Collapse
Affiliation(s)
- Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Yuechen Han
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Xue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Chuan Bo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Zhenbiao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Mingming Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, People's Republic of China.
| |
Collapse
|