1
|
Zagala A, Foster NEV, van Vugt FT, Dal Maso F, Dalla Bella S. The Ramp protocol: Uncovering individual differences in walking to an auditory beat using TeensyStep. Sci Rep 2024; 14:23779. [PMID: 39389982 PMCID: PMC11467224 DOI: 10.1038/s41598-024-72508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Intentionally walking to the beat of an auditory stimulus seems effortless for most humans. However, studies have revealed significant individual differences in the spontaneous tendency to synchronize. Some individuals tend to adapt their walking pace to the beat, while others show little or no adjustment. To fill this gap we introduce the Ramp protocol, which measures spontaneous adaptation to a change in an auditory rhythmic stimulus in a gait task. First, participants walk at their preferred cadence without stimulation. After several steps, a metronome is presented, timed to match the participant's heel-strike. Then, the metronome tempo progressively departs from the participant's cadence by either accelerating or decelerating. The implementation of the Ramp protocol required real-time detection of heel-strike and auditory stimuli aligned with participants' preferred cadence. To achieve this, we developed the TeensyStep device, which we validated compared to a gold standard for step detection. We also demonstrated the sensitivity of the Ramp protocol to individual differences in the spontaneous response to a tempo-changing rhythmic stimulus by introducing a new measure: the Response Score. This new method and quantification of spontaneous response to rhythmic stimuli holds promise for highlighting and distinguishing different profiles of adaptation in a gait task.
Collapse
Affiliation(s)
- Agnès Zagala
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada.
- Department of Psychology, University of Montreal, Montreal, Canada.
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada.
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Montreal, Canada.
| | - Nicholas E V Foster
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
| | - Floris T van Vugt
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada
- Department of Psychology, University of Montreal, Montreal, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Montreal, Canada
| | - Fabien Dal Maso
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada
- School of Kinesiology and Physical Activity Sciences, University of Montreal, Montreal, Canada
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Montreal, Canada
| | - Simone Dalla Bella
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada.
- Department of Psychology, University of Montreal, Montreal, Canada.
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada.
- Centre for Interdisciplinary Research on Brain and Learning (CIRCA), Montreal, Canada.
- University of Economics and Human Sciences in Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Lumaca M, Keller PE, Baggio G, Pando-Naude V, Bajada CJ, Martinez MA, Hansen JH, Ravignani A, Joe N, Vuust P, Vulić K, Sandberg K. Frontoparietal network topology as a neural marker of musical perceptual abilities. Nat Commun 2024; 15:8160. [PMID: 39289390 PMCID: PMC11408523 DOI: 10.1038/s41467-024-52479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Why are some individuals more musical than others? Neither cognitive testing nor classical localizationist neuroscience alone can provide a complete answer. Here, we test how the interplay of brain network organization and cognitive function delivers graded perceptual abilities in a distinctively human capacity. We analyze multimodal magnetic resonance imaging, cognitive, and behavioral data from 200+ participants, focusing on a canonical working memory network encompassing prefrontal and posterior parietal regions. Using graph theory, we examine structural and functional frontoparietal network organization in relation to assessments of musical aptitude and experience. Results reveal a positive correlation between perceptual abilities and the integration efficiency of key frontoparietal regions. The linkage between functional networks and musical abilities is mediated by working memory processes, whereas structural networks influence these abilities through sensory integration. Our work lays the foundation for future investigations into the neurobiological roots of individual differences in musicality.
Collapse
Affiliation(s)
- M Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| | - P E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - G Baggio
- Language Acquisition and Language Processing Lab, Norwegian University of Science and Technology, Trondheim, Norway
| | - V Pando-Naude
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - C J Bajada
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta / University of Malta Magnetic Resonance Imaging Research Platform, Msida, Malta
| | - M A Martinez
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - J H Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - A Ravignani
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - N Joe
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Health, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - K Vulić
- Department for Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - K Sandberg
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Popescu A, Holman AC. Loop and Enjoy: A Scoping Review of the Research on the Effects of Processing Fluency on Aesthetic Reactions to Auditory Stimuli. Psychol Rep 2024:332941241277474. [PMID: 39206490 DOI: 10.1177/00332941241277474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Processing fluency has been shown to affect how people aesthetically evaluate stimuli. While this effect is well documented for visual stimuli, the evidence accumulated for auditory stimuli has not yet been integrated. Our aim was to examine the relevant research on how processing fluency affects the aesthetic appreciation of auditory stimuli and to identify the extant knowledge gaps in this body of evidence. This scoping review of 19 studies reported across 13 articles found that, similarly to visual stimuli, fluency has a positive effect on liking of auditory stimuli. Additionally, we identified certain elements that impede the generalizability of the current research on the relationship between fluency and aesthetic reactions to auditory stimuli, such as a lack of consistency in the number of repeated exposures, the tendency to omit the affective component and the failure to account for personal variables such as musical abilities developed through musical training or the participants' personality or preferences. These results offer a starting point in developing novel and proper processing fluency manipulations of auditory stimuli and suggest several avenues for future research aiming to clarify the impact and importance of processing fluency and disfluency in this domain.
Collapse
Affiliation(s)
- Alexandru Popescu
- Department of Psychology, Alexandru Ioan Cuza University of Iasi, Romania
| | | |
Collapse
|
4
|
Colverson A, Barsoum S, Cohen R, Williamson J. Rhythmic musical activities may strengthen connectivity between brain networks associated with aging-related deficits in timing and executive functions. Exp Gerontol 2024; 186:112354. [PMID: 38176601 DOI: 10.1016/j.exger.2023.112354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Brain aging and common conditions of aging (e.g., hypertension) affect networks important in organizing information, processing speed and action programming (i.e., executive functions). Declines in these networks may affect timing and could have an impact on the ability to perceive and perform musical rhythms. There is evidence that participation in rhythmic musical activities may help to maintain and even improve executive functioning (near transfer), perhaps due to similarities in brain regions underlying timing, musical rhythm perception and production, and executive functioning. Rhythmic musical activities may present as a novel and fun activity for older adults to stimulate interacting brain regions that deteriorate with aging. However, relatively little is known about neurobehavioral interactions between aging, timing, rhythm perception and production, and executive functioning. In this review, we account for these brain-behavior interactions to suggest that deeper knowledge of overlapping brain regions associated with timing, rhythm, and cognition may assist in designing more targeted preventive and rehabilitative interventions to reduce age-related cognitive decline and improve quality of life in populations with neurodegenerative disease. Further research is needed to elucidate the functional relationships between brain regions associated with aging, timing, rhythm perception and production, and executive functioning to direct design of targeted interventions.
Collapse
Affiliation(s)
- Aaron Colverson
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, 1651 4th street, San Francisco, CA, United States of America.
| | - Stephanie Barsoum
- Center for Cognitive Aging and Memory, College of Medicine, University of Florida, PO Box 100277, Gainesville, FL 32610-0277, United States of America
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, College of Medicine, University of Florida, PO Box 100277, Gainesville, FL 32610-0277, United States of America
| | - John Williamson
- Center for Cognitive Aging and Memory, College of Medicine, University of Florida, PO Box 100277, Gainesville, FL 32610-0277, United States of America
| |
Collapse
|
5
|
Papatzikis E, Agapaki M, Selvan RN, Pandey V, Zeba F. Quality standards and recommendations for research in music and neuroplasticity. Ann N Y Acad Sci 2023; 1520:20-33. [PMID: 36478395 DOI: 10.1111/nyas.14944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research on how music influences brain plasticity has gained momentum in recent years. Considering, however, the nonuniform methodological standards implemented, the findings end up being nonreplicable and less generalizable. To address the need for a standardized baseline of research quality, we gathered all the studies in the music and neuroplasticity field in 2019 and appraised their methodological rigor systematically and critically. The aim was to provide a preliminary and, at the minimum, acceptable quality threshold-and, ipso facto, suggested recommendations-whereupon further discussion and development may take place. Quality appraisal was performed on 89 articles by three independent raters, following a standardized scoring system. The raters' scoring was cross-referenced following an inter-rater reliability measure, and further studied by performing multiple ratings comparisons and matrix analyses. The results for methodological quality were at a quite good level (quantitative articles: mean = 0.737, SD = 0.084; qualitative articles: mean = 0.677, SD = 0.144), following a moderate but statistically significant level of agreement between the raters (W = 0.44, χ2 = 117.249, p = 0.020). We conclude that the standards for implementation and reporting are of high quality; however, certain improvements are needed to reach the stringent levels presumed for such an influential interdisciplinary scientific field.
Collapse
Affiliation(s)
- Efthymios Papatzikis
- Department of Early Childhood Education and Care, Oslo Metropolitan University, Oslo, Norway
| | - Maria Agapaki
- Department of Early Childhood Education and Care, Oslo Metropolitan University, Oslo, Norway
| | - Rosari Naveena Selvan
- Institute for Physics 3 - Biophysics and Bernstein Center for Computational Neuroscience (BCCN), University of Göttingen, Göttingen, Germany.,Department of Psychology, University of Münster, Münster, Germany
| | | | - Fathima Zeba
- School of Humanities and Social Sciences, Manipal Academy of Higher Education Dubai, Dubai, United Arab Emirates
| |
Collapse
|
6
|
Rajan A, Shah A, Ingalhalikar M, Singh NC. Structural connectivity predicts sequential processing differences in music perception ability. Eur J Neurosci 2021; 54:6093-6103. [PMID: 34340255 DOI: 10.1111/ejn.15407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/08/2021] [Accepted: 07/24/2021] [Indexed: 11/25/2022]
Abstract
To relate individual differences in music perception ability with whole brain white matter connectivity, we scanned a group of 27 individuals with varying degrees of musical training and assessed musical ability in sensory and sequential music perception domains using the Profile of Music Perception Skills-Short version (PROMS-S). Sequential processing ability was estimated by combining performance on tasks for Melody, Standard Rhythm, Embedded Rhythm, and Accent subscores while sensory processing ability was ascertained via tasks of Tempo, Pitch, Timbre, and Tuning. Controlling for musical training, gender, and years of training, network-based statistics revealed positive linear associations between total PROMS-S scores and increased interhemispheric fronto-temporal and parieto-frontal white matter connectivity, suggesting a distinct segregated structural network for music perception. Secondary analysis revealed two subnetworks for sequential processing ability, one comprising ventral fronto-temporal and subcortical regions and the other comprising dorsal fronto-temporo-parietal regions. A graph-theoretic analysis to characterize the structural network revealed a positive association of modularity of the whole brain structural connectome with the d' total score. In addition, the nodal degree of the right posterior cingulate cortex also showed a significant positive correlation with the total d' score. Our results suggest that a distinct structural network of connectivity across fronto-temporal, cerebellar, and cerebro-subcortical regions is associated with music processing abilities and the right posterior cingulate cortex mediates the connectivity of this network.
Collapse
Affiliation(s)
- Archith Rajan
- Symbiosis Centre for Medical Image Analysis, Symbiosis International (Deemed University), Pune, India
| | - Apurva Shah
- Symbiosis Centre for Medical Image Analysis, Symbiosis International (Deemed University), Pune, India
| | - Madhura Ingalhalikar
- Symbiosis Centre for Medical Image Analysis, Symbiosis International (Deemed University), Pune, India
| | - Nandini Chatterjee Singh
- Language Literacy and Music Laboratory, National Brain Research Centre (Deemed University), Manesar, India.,Science of Learning, UNESCO Mahatma Gandhi Institute of Education for Peace and Sustainable Development, New Delhi, India
| |
Collapse
|
7
|
Mehrabinejad MM, Rafei P, Sanjari Moghaddam H, Sinaeifar Z, Aarabi MH. Sex Differences are Reflected in Microstructural White Matter Alterations of Musical Sophistication: A Diffusion MRI Study. Front Neurosci 2021; 15:622053. [PMID: 34366766 PMCID: PMC8339302 DOI: 10.3389/fnins.2021.622053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The human-specified ability to engage with different kinds of music in sophisticated ways is named “Musical Sophistication.” Herein, we investigated specific white matter (WM) tracts that are associated with musical sophistication and musicality in both genders, separately, using Diffusion MRI connectometry approach. We specifically aimed to explore potential sex differences regarding WM alterations correlated with musical sophistication. Methods: 123 healthy participants [70 (56.9%) were male, mean age = 36.80 ± 18.86 year], who were evaluated for musical sophistication using Goldsmiths Musical Sophistication Index (Gold-MSI) self-assessment instrument from the LEMON database, were recruited in this study. The WM correlates of two Gold-MSI subscales (active engagement and music training) were analyzed. Images were prepared and analyzed with diffusion connectometry to construct the local connectome. Multiple regression models were then fitted to address the correlation of local connectomes with Gold-MSI components with the covariates of age and handedness. Results: a significant positive correlation between WM integrity in the corpus callosum (CC), right corticospinal tract (CST), cingulum, middle cerebellar peduncle (MCP), bilateral parieto-pontine tract, bilateral cerebellum, and left arcuate fasciculus (AF) and both active engagement [false discovery rate (FDR) = 0.008] and music training (FDR = 0.057) was detected in males. However, WM integrity in the body of CC, MCP, and cerebellum in females showed an inverse association with active engagement (FDR = 0.046) and music training (FDR = 0.032). Conclusion: WM microstructures with functional connection with motor and somatosensory areas (CST, cortico-pontine tracts, CC, cerebellum, cingulum, and MCP) and language processing area (AF) have significant correlation with music engagement and training. Our findings show that these associations are different between males and females, which could potentially account for distinctive mechanisms related to musical perception and musical abilities across genders.
Collapse
Affiliation(s)
| | - Parnian Rafei
- Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | | | - Zeinab Sinaeifar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
8
|
Palomar-García MÁ, Hernández M, Olcina G, Adrián-Ventura J, Costumero V, Miró-Padilla A, Villar-Rodríguez E, Ávila C. Auditory and frontal anatomic correlates of pitch discrimination in musicians, non-musicians, and children without musical training. Brain Struct Funct 2020; 225:2735-2744. [PMID: 33029708 DOI: 10.1007/s00429-020-02151-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
Individual differences in pitch discrimination have been associated with the volume of both the bilateral Heschl's gyrus and the right inferior frontal gyrus (IFG). However, most of these studies used samples composed of individuals with different amounts of musical training. Here, we investigated the relationship between pitch discrimination and individual differences in the gray matter (GM) volume of these brain structures in 32 adult musicians, 28 adult non-musicians, and 32 children without musical training. The results showed that (i) the individuals without musical training (whether children or adults) who were better at pitch discrimination had greater volume of auditory regions, whereas (ii) musicians with better pitch discrimination had greater volume of the IFG. These results suggest that the relationship between pitch discrimination and the volume of auditory regions is innately established early in life, and that musical training modulates the volume of the IFG, probably improving audio-motor connectivity. This is the first study to detect a relationship between pitch discrimination ability and GM volume before beginning any musical training in children and adults.
Collapse
Affiliation(s)
- María-Ángeles Palomar-García
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain.
| | - Mireia Hernández
- Cognition and Brain Plasticity Group, Department of Cognition, Development and Educational Psychology, Institut de Neurociències, University of Barcelona, Barcelona, Spain
| | - Gustau Olcina
- Neuropsychology and Functional Neuroimaging Group, Department of Education, University Jaume I, 12071, Castellón, Spain
| | - Jesús Adrián-Ventura
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| | - Víctor Costumero
- Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
| | - Anna Miró-Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| | - Esteban Villar-Rodríguez
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| | - César Ávila
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology, Clinical Psychology and Psychobiology, Universitat Jaume I, Avda. Sos Baynat, s/n., 12071, Castellón de la Plana, Spain
| |
Collapse
|
9
|
Relationship between Interhemispheric Inhibition and Dexterous Hand Performance in Musicians and Non-musicians. Sci Rep 2019; 9:11574. [PMID: 31399612 PMCID: PMC6689014 DOI: 10.1038/s41598-019-47959-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
Interhemispheric inhibition (IHI) is essential for dexterous motor control. Small previous studies have shown differences in IHI in musicians compared to non-musicians, but it is not clear whether these differences are robustly linked to musical performance. In the largest study to date, we examined IHI and comprehensive measures of dexterous bimanual performance in 72 individuals (36 musicians and 36 non-musicians). Dexterous bimanual performance was quantified by speed, accuracy, and evenness derived from a series of hand tasks. As expected, musicians significantly outperformed non-musicians. Surprisingly, these performance differences could not be simply explained by IHI, as IHI did not significantly differ between musicians and non-musicians. However, canonical correlation analysis revealed a significant relationship between combinations of IHI and performance variables in the musician group. Specifically, we identified that IHI may contribute to the maintenance of evenness regardless of speed, a feature of musical performance that may be driven by practice with a metronome. Therefore, while IHI changes by themselves may not be sufficient to explain superior hand dexterity exhibited by musicians, IHI may be a potential neural correlate for specific features of musical performance.
Collapse
|