1
|
Marten LE, Singh A, Muellen AM, Noack SM, Kozyrev V, Schweizer R, Goya-Maldonado R. Motor performance and functional connectivity between the posterior cingulate cortex and supplementary motor cortex in bipolar and unipolar depression. Eur Arch Psychiatry Clin Neurosci 2024; 274:655-671. [PMID: 37638997 PMCID: PMC10995093 DOI: 10.1007/s00406-023-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Although implicated in unsuccessful treatment, psychomotor deficits and their neurobiological underpinnings in bipolar (BD) and unipolar (UD) depression remain poorly investigated. Here, we hypothesized that motor performance deficits in depressed patients would relate to basal functional coupling of the hand primary motor cortex (M1) and the posterior cingulate cortex (PCC) with the supplementary motor area (SMA). We performed a longitudinal, naturalistic study in BD, UD and matched healthy controls comprising of two resting-state functional MRI measurements five weeks apart and accompanying assessments of motor performance using a finger tapping task (FTT). A subject-specific seed-based analysis describing functional connectivity between PCC-SMA as well as M1-SMA was conducted. The basal relationships with motor performance were investigated using linear regression models and all measures were compared across groups. Performance in FTT was impaired in BD in comparison to HC in both sessions. Behavioral performance across groups correlated significantly with resting state functional coupling of PCC-SMA, but not of M1-SMA regions. This relationship was partially reflected in a reduced PCC-SMA connectivity in BD vs HC in the second session. Exploratory evaluation of large-scale networks coupling (SMN-DMN) exhibited no correlation to motor performance. Our results shed new light on the association between the degree of disruption in the SMA-PCC anticorrelation and the level of motor impairment in BD.
Collapse
Affiliation(s)
- Lara E Marten
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Anna M Muellen
- Cognitive Neuroscience Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Sören M Noack
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Mittlere Straße 91, 4056, Basel, Switzerland
| | - Renate Schweizer
- Functional Imaging Laboratory, German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold-Straße 5, 37075, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Xu J, Zhang X, Cheng Q, Zhang H, Zhong L, Luo Y, Zhang Y, Ou Z, Yan Z, Peng K, Liu G. Abnormal supplementary motor areas are associated with idiopathic and acquired blepharospasm. Parkinsonism Relat Disord 2024; 121:106029. [PMID: 38394948 DOI: 10.1016/j.parkreldis.2024.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Blepharospasm is a common form of focal dystonia characterized by excessive and involuntary spasms of the orbicularis oculi. In addition to idiopathic blepharospasm, lesions in various brain regions can also cause acquired blepharospasm. Whether these two types of blepharospasm share a common brain network remains largely unknown. Herein, we performed lesion coactivation network mapping, based on meta-analytic connectivity modeling, to test whether lesions causing blepharospasm could be mapped to a common coactivation brain network. We then tested the abnormality of the network in patients with idiopathic blepharospasm (n = 42) compared with healthy controls (n = 44). We identified 21 cases of lesion-induced blepharospasms through a systematic literature search. Although these lesions were heterogeneous, they were part of a co-activated brain network that mainly included the bilateral supplementary motor areas. Coactivation of these regions defines a single brain network that encompasses or is adjacent to most heterogeneous lesions causing blepharospasm. Moreover, the bilateral supplementary motor area is primarily associated with action execution, visual motion, and imagination, and participates in finger tapping and saccades. They also reported decreased functional connectivity with the left posterior cingulate cortex in patients with idiopathic blepharospasm. These results demonstrate a common convergent abnormality of the supplementary motor area across idiopathic and acquired blepharospasms, providing additional evidence that the supplementary motor area is an important brain region that is pathologically impaired in patients with blepharospasm.
Collapse
Affiliation(s)
- Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shenzhen Children's Hospital, Shenzhen, 518000, China
| | - Qinxiu Cheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haoran Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Yue Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Zilin Ou
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Zhicong Yan
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Gang Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Dercksen TT, Widmann A, Noesselt T, Wetzel N. Somatosensory omissions reveal action-related predictive processing. Hum Brain Mapp 2024; 45:e26550. [PMID: 38050773 PMCID: PMC10915725 DOI: 10.1002/hbm.26550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
The intricate relation between action and somatosensory perception has been studied extensively in the past decades. Generally, a forward model is thought to predict the somatosensory consequences of an action. These models propose that when an action is reliably coupled to a tactile stimulus, unexpected absence of the stimulus should elicit prediction error. Although such omission responses have been demonstrated in the auditory modality, it remains unknown whether this mechanism generalizes across modalities. This study therefore aimed to record action-induced somatosensory omission responses using EEG in humans. Self-paced button presses were coupled to somatosensory stimuli in 88% of trials, allowing a prediction, or in 50% of trials, not allowing a prediction. In the 88% condition, stimulus omission resulted in a neural response consisting of multiple components, as revealed by temporal principal component analysis. The oN1 response suggests similar sensory sources as stimulus-evoked activity, but an origin outside primary cortex. Subsequent oN2 and oP3 responses, as previously observed in the auditory domain, likely reflect modality-unspecific higher order processes. Together, findings straightforwardly demonstrate somatosensory predictions during action and provide evidence for a partially amodal mechanism of prediction error generation.
Collapse
Affiliation(s)
- Tjerk T. Dercksen
- Research Group Neurocognitive DevelopmentLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
| | - Andreas Widmann
- Research Group Neurocognitive DevelopmentLeibniz Institute for NeurobiologyMagdeburgGermany
- Wilhelm Wundt Institute for PsychologyLeipzig UniversityLeipzigGermany
| | - Tömme Noesselt
- Center for Behavioral Brain SciencesMagdeburgGermany
- Department of Biological PsychologyOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Nicole Wetzel
- Research Group Neurocognitive DevelopmentLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
- University of Applied Sciences Magdeburg‐StendalStendalGermany
| |
Collapse
|
4
|
Kobayashi K, Shiba Y, Honda S, Nakajima S, Fujii S, Mimura M, Noda Y. Short-Term Effect of Auditory Stimulation on Neural Activities: A Scoping Review of Longitudinal Electroencephalography and Magnetoencephalography Studies. Brain Sci 2024; 14:131. [PMID: 38391706 PMCID: PMC10887208 DOI: 10.3390/brainsci14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Explored through EEG/MEG, auditory stimuli function as a suitable research probe to reveal various neural activities, including event-related potentials, brain oscillations and functional connectivity. Accumulating evidence in this field stems from studies investigating neuroplasticity induced by long-term auditory training, specifically cross-sectional studies comparing musicians and non-musicians as well as longitudinal studies with musicians. In contrast, studies that address the neural effects of short-term interventions whose duration lasts from minutes to hours are only beginning to be featured. Over the past decade, an increasing body of evidence has shown that short-term auditory interventions evoke rapid changes in neural activities, and oscillatory fluctuations can be observed even in the prestimulus period. In this scoping review, we divided the extracted neurophysiological studies into three groups to discuss neural activities with short-term auditory interventions: the pre-stimulus period, during stimulation, and a comparison of before and after stimulation. We show that oscillatory activities vary depending on the context of the stimuli and are greatly affected by the interplay of bottom-up and top-down modulational mechanisms, including attention. We conclude that the observed rapid changes in neural activitiesin the auditory cortex and the higher-order cognitive part of the brain are causally attributed to short-term auditory interventions.
Collapse
Affiliation(s)
- Kanon Kobayashi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasushi Shiba
- Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0816, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
5
|
Beño-Ruiz-de-la-Sierra RM, Arjona-Valladares A, Fondevila Estevez S, Fernández-Linsenbarth I, Díez Á, Molina V. Corollary discharge function in healthy controls: Evidence about self-speech and external speech processing. Eur J Neurosci 2023; 58:3705-3713. [PMID: 37635264 DOI: 10.1111/ejn.16125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
As we speak, corollary discharge mechanisms suppress the auditory conscious perception of the self-generated voice in healthy subjects. This suppression has been associated with the attenuation of the auditory N1 component. To analyse this corollary discharge phenomenon (agency and ownership), we registered the event-related potentials of 42 healthy subjects. The N1 and P2 components were elicited by spoken vowels (talk condition; agency), by played-back vowels recorded with their own voice (listen-self condition; ownership) and by played-back vowels recorded with an external voice (listen-other condition). The N1 amplitude elicited by the talk condition was smaller compared with the listen-self and listen-other conditions. There were no amplitude differences in N1 between listen-self and listen-other conditions. The P2 component did not show differences between conditions. Additionally, a peak latency analysis of N1 and P2 components between the three conditions showed no differences. These findings corroborate previous results showing that the corollary discharge mechanisms dampen sensory responses to self-generated speech (agency experience) and provide new neurophysiological evidence about the similarities in the processing of played-back vowels with our own voice (ownership experience) and with an external voice.
Collapse
Affiliation(s)
| | | | | | | | - Álvaro Díez
- Department of Psychiatry, School of Medicine, University of Valladolid, Valladolid, Spain
| | - Vicente Molina
- Department of Psychiatry, School of Medicine, University of Valladolid, Valladolid, Spain
- Psychiatry Service, University Clinical Hospital of Valladolid, Valladolid, Spain
| |
Collapse
|
6
|
Dercksen TT, Widmann A, Scharf F, Wetzel N. Sound omission related brain responses in children. Dev Cogn Neurosci 2022; 53:101045. [PMID: 34923314 PMCID: PMC8688889 DOI: 10.1016/j.dcn.2021.101045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/21/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022] Open
Abstract
Action is an important way for children to learn about the world. Recent theories suggest that action is inherently accompanied by the sensory prediction of its effects. Such predictions can be revealed by rarely omitting the expected sensory consequence of the action, resulting in an omission response that is observable in the EEG. Although prediction errors play an important role in models of learning and development, little is known about omission-related brain responses in children. This study used a motor-auditory omission paradigm, testing a group of 6-8-year-old children and an adult group (N = 31 each). In an identity-specific condition, the sound coupled to the motor action was predictable, while in an identity unspecific condition the sound was unpredictable. Results of a temporal principal component analysis revealed that sound-related brain responses underlying the N1-complex differed considerably between age groups. Despite these developmental differences, omission responses (oN1) were similar between age groups. Two subcomponents of the oN1 were differently affected by specific and unspecific predictions. Results demonstrate that children, independent from the maturation of sound processing mechanisms, can implement specific and unspecific predictions as flexibly as adults. This supports theories that regard action and prediction error as important drivers of cognitive development.
Collapse
Affiliation(s)
- Tjerk T Dercksen
- Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany.
| | - Andreas Widmann
- Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany; Leipzig University, Neumarkt 9-19, D-04109 Leipzig, Germany
| | - Florian Scharf
- University of Münster, Fliednerstraße 21, 48149 Münster, Germany
| | - Nicole Wetzel
- Leibniz Institute for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, D-39106 Magdeburg, Germany; University of Applied Sciences Magdeburg-Stendal, Osterburgerstraße 25, 39576 Stendal, Germany
| |
Collapse
|
7
|
Karpiel I, Kurasz Z, Kurasz R, Duch K. The Influence of Filters on EEG-ERP Testing: Analysis of Motor Cortex in Healthy Subjects. SENSORS 2021; 21:s21227711. [PMID: 34833790 PMCID: PMC8619013 DOI: 10.3390/s21227711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
The raw EEG signal is always contaminated with many different artifacts, such as muscle movements (electromyographic artifacts), eye blinking (electrooculographic artifacts) or power line disturbances. All artifacts must be removed for correct data interpretation. However, various noise reduction methods significantly influence the final shape of the EEG signal and thus its characteristic values, latency and amplitude. There are several types of filters to eliminate noise early in the processing of EEG data. However, there is no gold standard for their use. This article aims to verify and compare the influence of four various filters (FIR, IIR, FFT, NOTCH) on the latency and amplitude of the EEG signal. By presenting a comparison of selected filters, the authors intend to raise awareness among researchers as regards the effects of known filters on latency and amplitude in a selected area-the sensorimotor area.
Collapse
Affiliation(s)
- Ilona Karpiel
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
- Correspondence: ; Tel.: +32-271-60-13 (ext. 127)
| | - Zofia Kurasz
- Institute of Psychology, University of Silesia, 40-007 Katowice, Poland;
| | - Rafał Kurasz
- Independent Researcher, 40-007 Katowice, Poland;
| | - Klaudia Duch
- Faculty of Science and Technology, Institute of Biomedical Engineering, Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice, 41-500 Chorzów, Poland;
| |
Collapse
|
8
|
A meta-analysis of Libet-style experiments. Neurosci Biobehav Rev 2021; 128:182-198. [PMID: 34119525 DOI: 10.1016/j.neubiorev.2021.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022]
Abstract
In the seminal Libet experiment (Libet et al., 1983), unconscious brain activity preceded the self-reported, conscious intention to move. This was repeatedly interpreted as challenging the view that (conscious) mental states cause behavior and, prominently, as challenging the existence of free will. Extensive discussions in philosophy, psychology, neuroscience, and jurisprudence followed, but further empirical findings were heterogeneous. However, a quantitative review of the literature summarizing the evidence of Libet-style experiments is lacking. The present meta-analysis fills this gap. The results revealed a temporal pattern that is largely consistent with the one found by Libet and colleagues. Remarkably, there were only k = 6 studies for the time difference between unconscious brain activity and the conscious intention to move - the most crucial time difference regarding implications about conscious causation and free will. Additionally, there was a high degree of uncertainty associated with this meta-analytic effect. We conclude that some of Libet et al.'s findings appear more fragile than anticipated in light of the substantial scientific work that built on them.
Collapse
|
9
|
Kearney J, Brittain JS. Sensory Attenuation in Sport and Rehabilitation: Perspective from Research in Parkinson's Disease. Brain Sci 2021; 11:580. [PMID: 33946218 PMCID: PMC8145846 DOI: 10.3390/brainsci11050580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
People with Parkinson's disease (PD) experience motor symptoms that are affected by sensory information in the environment. Sensory attenuation describes the modulation of sensory input caused by motor intent. This appears to be altered in PD and may index important sensorimotor processes underpinning PD symptoms. We review recent findings investigating sensory attenuation and reconcile seemingly disparate results with an emphasis on task-relevance in the modulation of sensory input. Sensory attenuation paradigms, across different sensory modalities, capture how two identical stimuli can elicit markedly different perceptual experiences depending on our predictions of the event, but also the context in which the event occurs. In particular, it appears as though contextual information may be used to suppress or facilitate a response to a stimulus on the basis of task-relevance. We support this viewpoint by considering the role of the basal ganglia in task-relevant sensory filtering and the use of contextual signals in complex environments to shape action and perception. This perspective highlights the dual effect of basal ganglia dysfunction in PD, whereby a reduced capacity to filter task-relevant signals harms the ability to integrate contextual cues, just when such cues are required to effectively navigate and interact with our environment. Finally, we suggest how this framework might be used to establish principles for effective rehabilitation in the treatment of PD.
Collapse
Affiliation(s)
- Joshua Kearney
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - John-Stuart Brittain
- Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
10
|
Abstract
A number of notions in the fields of motor control and kinesthetic perception have been used without clear definitions. In this review, we consider definitions for efference copy, percept, and sense of effort based on recent studies within the physical approach, which assumes that the neural control of movement is based on principles of parametric control and involves defining time-varying profiles of spatial referent coordinates for the effectors. The apparent redundancy in both motor and perceptual processes is reconsidered based on the principle of abundance. Abundance of efferent and afferent signals is viewed as the means of stabilizing both salient action characteristics and salient percepts formalized as stable manifolds in high-dimensional spaces of relevant elemental variables. This theoretical scheme has led recently to a number of novel predictions and findings. These include, in particular, lower accuracy in perception of variables produced by elements involved in a multielement task compared with the same elements in single-element tasks, dissociation between motor and perceptual effects of muscle coactivation, force illusions induced by muscle vibration, and errors in perception of unintentional drifts in performance. Taken together, these results suggest that participation of efferent signals in perception frequently involves distorted copies of actual neural commands, particularly those to antagonist muscles. Sense of effort is associated with such distorted efferent signals. Distortions in efference copy happen spontaneously and can also be caused by changes in sensory signals, e.g., those produced by muscle vibration.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
11
|
Heins N, Trempler I, Zentgraf K, Raab M, Schubotz RI. Too Late! Influence of Temporal Delay on the Neural Processing of One's Own Incidental and Intentional Action-Induced Sounds. Front Neurosci 2020; 14:573970. [PMID: 33250704 PMCID: PMC7674666 DOI: 10.3389/fnins.2020.573970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
The influence of delayed auditory feedback on action evaluation and execution of real-life action-induced sounds apart from language and music is still poorly understood. Here, we examined how a temporal delay impacted the behavioral evaluation and neural representation of hurdling and tap-dancing actions in a functional magnetic resonance imaging (fMRI) experiment, postulating that effects of delay diverge between the two, as we create action-induced sounds intentionally in tap dancing, but incidentally in hurdling. Based on previous findings, we expected that conditions differ regarding the engagement of the supplementary motor area (SMA), posterior superior temporal gyrus (pSTG), and primary auditory cortex (A1). Participants were videotaped during a 9-week training of hurdling and tap dancing; in the fMRI scanner, they were presented with point-light videos of their own training videos, including the original or the slightly delayed sound, and had to evaluate how well they performed on each single trial. For the undelayed conditions, we replicated A1 attenuation and enhanced pSTG and SMA engagement for tap dancing (intentionally generated sounds) vs. hurdling (incidentally generated sounds). Delayed auditory feedback did not negatively influence behavioral rating scores in general. Blood-oxygen-level-dependent (BOLD) response transiently increased and then adapted to repeated presentation of point-light videos with delayed sound in pSTG. This region also showed a significantly stronger correlation with the SMA under delayed feedback. Notably, SMA activation increased more for delayed feedback in the tap-dancing condition, covarying with higher rating scores. Findings suggest that action evaluation is more strongly based on top–down predictions from SMA when sounds of intentional action are distorted.
Collapse
Affiliation(s)
- Nina Heins
- Department of Psychology, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Ima Trempler
- Department of Psychology, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Karen Zentgraf
- Institute for Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Markus Raab
- Institute of Psychology, German Sport University Cologne, Cologne, Germany.,School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Ricarda I Schubotz
- Department of Psychology, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Heins N, Pomp J, Kluger DS, Trempler I, Zentgraf K, Raab M, Schubotz RI. Incidental or Intentional? Different Brain Responses to One's Own Action Sounds in Hurdling vs. Tap Dancing. Front Neurosci 2020; 14:483. [PMID: 32477059 PMCID: PMC7237737 DOI: 10.3389/fnins.2020.00483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Most human actions produce concomitant sounds. Action sounds can be either part of the action goal (GAS, goal-related action sounds), as for instance in tap dancing, or a mere by-product of the action (BAS, by-product action sounds), as for instance in hurdling. It is currently unclear whether these two types of action sounds-incidental or intentional-differ in their neural representation and whether the impact on the performance evaluation of an action diverges between the two. We here examined whether during the observation of tap dancing compared to hurdling, auditory information is a more important factor for positive action quality ratings. Moreover, we tested whether observation of tap dancing vs. hurdling led to stronger attenuation in primary auditory cortex, and a stronger mismatch signal when sounds do not match our expectations. We recorded individual point-light videos of newly trained participants performing tap dancing and hurdling. In the subsequent functional magnetic resonance imaging (fMRI) session, participants were presented with the videos that displayed their own actions, including corresponding action sounds, and were asked to rate the quality of their performance. Videos were either in their original form or scrambled regarding the visual modality, the auditory modality, or both. As hypothesized, behavioral results showed significantly lower rating scores in the GAS condition compared to the BAS condition when the auditory modality was scrambled. Functional MRI contrasts between BAS and GAS actions revealed higher activation of primary auditory cortex in the BAS condition, speaking in favor of stronger attenuation in GAS, as well as stronger activation of posterior superior temporal gyri and the supplementary motor area in GAS. Results suggest that the processing of self-generated action sounds depends on whether we have the intention to produce a sound with our action or not, and action sounds may be more prone to be used as sensory feedback when they are part of the explicit action goal. Our findings contribute to a better understanding of the function of action sounds for learning and controlling sound-producing actions.
Collapse
Affiliation(s)
- Nina Heins
- Department of Psychology, University of Muenster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Jennifer Pomp
- Department of Psychology, University of Muenster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Daniel S. Kluger
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - Ima Trempler
- Department of Psychology, University of Muenster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Karen Zentgraf
- Department of Movement Science and Training in Sports, Institute of Sport Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Markus Raab
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
- School of Applied Sciences, London South Bank University, London, United Kingdom
| | - Ricarda I. Schubotz
- Department of Psychology, University of Muenster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| |
Collapse
|