1
|
Sabat M, de Dampierre C, Tallon-Baudry C. Evidence for domain-general arousal from semantic and neuroimaging meta-analyses reconciles opposing views on arousal. Proc Natl Acad Sci U S A 2025; 122:e2413808122. [PMID: 39899711 PMCID: PMC11831115 DOI: 10.1073/pnas.2413808122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/13/2024] [Indexed: 02/05/2025] Open
Abstract
Arousal refers to changes in brain-body state underpinning motivated behavior but lacks a proper definition and taxonomy. Neuroscience and psychology textbooks offer surprisingly different views on what arousal is, from a global brain-wide modulation of neuronal activity to a multidimensional construct, with specific brain-body patterns tuned to a given situation. The huge number of scientific articles mentioning arousal (~50,000) highlights the importance of the concept but also explains why such a vast literature has never been systematically reviewed so far. Here, we leverage the tools of natural language processing to probe the nature of arousal in a data-driven, comprehensive manner. We show that arousal comes in seven varieties: cognitive, emotional, physiological, sexual, related to stress disorders, to sleep, or to sleep disorders. We then ask whether domain-general arousal exists at the cortical level, and run meta-analyses of the brain imaging literature to reveal that all varieties of arousal, except arousal in sleep disorders for lack of data, converge onto a cortical network composed of the presupplementary motor area and the left and right dorsal anterior insula. More precisely, we find that activity in dysgranular insular area 7 (Jülich atlas), the region with the highest convergence across varieties of arousal, is also specifically associated with arousal. The domain-general arousal network might trigger the reorganization of large-scale brain networks-a global mechanism-resulting in a context-specific configuration-in line with the multidimensional view. Future taxonomies of arousal refining the alignment between concepts and data should include domain-general arousal as a central component.
Collapse
Affiliation(s)
- Magdalena Sabat
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’études cognitives, INSERM, Ecole Normale Supérieure, Paris Sciences Lettres University, Paris75005, France
- Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, Paris Sciences Lettres University, Paris75005, France
| | - Charles de Dampierre
- Institut Jean Nicod, CNRS, Ecole des Hautes Etudes en Sciences Sociales, Département d’études cognitives, École normale supérieure, Paris Sciences Lettres University, Paris75005, France
| | - Catherine Tallon-Baudry
- Laboratoire de Neurosciences Cognitives et Computationnelles, Département d’études cognitives, INSERM, Ecole Normale Supérieure, Paris Sciences Lettres University, Paris75005, France
| |
Collapse
|
2
|
Reißner B, Grohmann W, Peiseler N, Pinho J, Hußmann K, Werner CJ, Heim S. Quantifier processing and semantic flexibility in patients with aphasia. Front Psychol 2024; 15:1328853. [PMID: 39100551 PMCID: PMC11294751 DOI: 10.3389/fpsyg.2024.1328853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
Processing of quantifiers such as "many" and "few" relies on number knowledge, linguistic abilities, and working memory. Negative quantifiers (e.g., "few," "less than half") induce higher processing costs than their positive counterparts. Furthermore, the meaning of some quantifiers is flexible and thus adaptable. Importantly, in neurotypical individuals, changing the meaning of one quantifier also leads to a generalized change in meaning for its polar opposite (e.g., the change of the meaning of "many" leads to the change of that of "few"). Here, we extended this research to patients with fluent and non-fluent aphasia after stroke. In two experiments, participants heard sentences of the type "Many/few of the circles are yellow/blue," each followed by a picture with different quantities of blue and yellow circles. The participants judged whether the sentence adequately described the picture. Each experiment consisted of three blocks: a baseline block to assess the participants' criteria for both quantifiers, a training block to shift the criteria for "many," and a test block, identical to the baseline to capture any changes in quantifier semantics. In Experiment 1, the change of the meaning of "many" was induced by using adaptation to small numbers (20-50%) of circles of the named color. In Experiment 2, explicit feedback was given in the training block after each response to rate proportions of 40% (or higher) as "many," whereas 40% is normally rather rated as "few." The objective was to determine whether people with fluent or non-fluent aphasia were able to process quantifiers appropriately and whether generalized semantic flexibility was present after brain damage. Sixteen out of 21 patients were able to perform the task. People with fluent aphasia showed the expected polarity effect in the reaction times and shifted their criteria for "many" with generalization to the untrained quantifier "few." This effect, however, was only obtained after explicit feedback (Experiment 2) but not by mere adaptation (Experiment 1). In contrast, people with non-fluent aphasia did not change the quantifier semantics in either experiment. This study contributes to gaining new insights into quantifier processing and semantic flexibility in people with aphasia and general underlying processing mechanisms.
Collapse
Affiliation(s)
- Birte Reißner
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Wiebke Grohmann
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Natalja Peiseler
- Department of Linguistics, Heinrich Heine University, Düsseldorf, Germany
| | - João Pinho
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katja Hußmann
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Cornelius J. Werner
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Johanniter Hospital Stendal, Stendal, Germany
| | - Stefan Heim
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
3
|
Duong A, Quabs J, Kucyi A, Lusk Z, Buch V, Caspers S, Parvizi J. Subjective states induced by intracranial electrical stimulation matches the cytoarchitectonic organization of the human insula. Brain Stimul 2023; 16:1653-1665. [PMID: 37949296 PMCID: PMC10893903 DOI: 10.1016/j.brs.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Functions of the human insula have been explored extensively with neuroimaging methods and intracranial electrical stimulation studies that have highlighted a functional segregation across its subregions. A recently developed cytoarchitectonic map of the human insula has also segregated this brain region into various areas. Our knowledge of the functional organization of this brain region at the level of these fine-parceled microstructural areas remains only partially understood. We address this gap of knowledge by applying a multimodal approach linking direct electrical stimulation and task-evoked intracranial EEG recordings with microstructural subdivisions of the human insular cortex. In 17 neurosurgical patients with 142 implanted electrodes, stimulation of 40 % of the sites induced a reportable change in the conscious experience of the subjects in visceral/autonomic, anxiety, taste/olfactory, pain/temperature as well as somatosensory domains. These subjective responses showed a topographical allocation to microstructural areas defined by probabilistic cytoarchitectonic parcellation maps of the human insula. We found the pain and thermal responses to be located in areas lg2/ld2, while non-painful/non-thermal somatosensory responses corresponded to area ld3 and visceroceptive responses to area Id6. Lastly, the stimulation of area Id7 in the dorsal anterior insula, failed to induce reportable changes to subjective experience even though intracranial EEG recordings from this region captured significant time-locked high-frequency activity (HFA). Our results provide a multimodal map of functional subdivisions within the human insular cortex at the individual brain basis and characterize their anatomical association with fine-grained cytoarchitectonic parcellations of this brain structure.
Collapse
Affiliation(s)
- Anna Duong
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Julian Quabs
- Institute for Anatomy I, Medical Faculty & University Hospital, Heinrich Heine University, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - Zoe Lusk
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Vivek Buch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty & University Hospital, Heinrich Heine University, Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
4
|
Unger N, Haeck M, Eickhoff SB, Camilleri JA, Dickscheid T, Mohlberg H, Bludau S, Caspers S, Amunts K. Cytoarchitectonic mapping of the human frontal operculum-New correlates for a variety of brain functions. Front Hum Neurosci 2023; 17:1087026. [PMID: 37448625 PMCID: PMC10336231 DOI: 10.3389/fnhum.2023.1087026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/18/2023] [Indexed: 07/15/2023] Open
Abstract
The human frontal operculum (FOp) is a brain region that covers parts of the ventral frontal cortex next to the insula. Functional imaging studies showed activations in this region in tasks related to language, somatosensory, and cognitive functions. While the precise cytoarchitectonic areas that correlate to these processes have not yet been revealed, earlier receptorarchitectonic analysis resulted in a detailed parcellation of the FOp. We complemented this analysis by a cytoarchitectonic study of a sample of ten postmortem brains and mapped the posterior FOp in serial, cell-body stained histological sections using image analysis and multivariate statistics. Three new areas were identified: Op5 represents the most posterior area, followed by Op6 and the most anterior region Op7. Areas Op5-Op7 approach the insula, up to the circular sulcus. Area 44 of Broca's region, the most ventral part of premotor area 6, and parts of the parietal operculum are dorso-laterally adjacent to Op5-Op7. The areas did not show any interhemispheric or sex differences. Three-dimensional probability maps and a maximum probability map were generated in stereotaxic space, and then used, in a first proof-of-concept-study, for functional decoding and analysis of structural and functional connectivity. Functional decoding revealed different profiles of cytoarchitectonically identified Op5-Op7. While left Op6 was active in music cognition, right Op5 was involved in chewing/swallowing and sexual processing. Both areas showed activation during the exercise of isometric force in muscles. An involvement in the coordination of flexion/extension could be shown for the right Op6. Meta-analytic connectivity modeling revealed various functional connections of the FOp areas within motor and somatosensory networks, with the most evident connection with the music/language network for Op6 left. The new cytoarchitectonic maps are part of Julich-Brain, and publicly available to serve as a basis for future analyses of structural-functional relationships in this region.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia A. Camilleri
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute of Computer Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
5
|
Díaz-Rivera MN, Birba A, Fittipaldi S, Mola D, Morera Y, de Vega M, Moguilner S, Lillo P, Slachevsky A, González Campo C, Ibáñez A, García AM. Multidimensional inhibitory signatures of sentential negation in behavioral variant frontotemporal dementia. Cereb Cortex 2022; 33:403-420. [PMID: 35253864 PMCID: PMC9837611 DOI: 10.1093/cercor/bhac074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Processing of linguistic negation has been associated to inhibitory brain mechanisms. However, no study has tapped this link via multimodal measures in patients with core inhibitory alterations, a critical approach to reveal direct neural correlates and potential disease markers. METHODS Here we examined oscillatory, neuroanatomical, and functional connectivity signatures of a recently reported Go/No-go negation task in healthy controls and behavioral variant frontotemporal dementia (bvFTD) patients, typified by primary and generalized inhibitory disruptions. To test for specificity, we also recruited persons with Alzheimer's disease (AD), a disease involving frequent but nonprimary inhibitory deficits. RESULTS In controls, negative sentences in the No-go condition distinctly involved frontocentral delta (2-3 Hz) suppression, a canonical inhibitory marker. In bvFTD patients, this modulation was selectively abolished and significantly correlated with the volume and functional connectivity of regions supporting inhibition (e.g. precentral gyrus, caudate nucleus, and cerebellum). Such canonical delta suppression was preserved in the AD group and associated with widespread anatomo-functional patterns across non-inhibitory regions. DISCUSSION These findings suggest that negation hinges on the integrity and interaction of spatiotemporal inhibitory mechanisms. Moreover, our results reveal potential neurocognitive markers of bvFTD, opening a new agenda at the crossing of cognitive neuroscience and behavioral neurology.
Collapse
Affiliation(s)
- Mariano N Díaz-Rivera
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), C1425FQD, Godoy Cruz 2370, Buenos Aires, Argentina
| | - Agustina Birba
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Débora Mola
- Instituto de Investigaciones Psicológicas, CONICET, 5000, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yurena Morera
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Campus de Guajara, 38205 La Laguna, Santa Cruz de Tenerife, Spain
| | - Manuel de Vega
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Campus de Guajara, 38205 La Laguna, Santa Cruz de Tenerife, Spain
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000, Santiago, Chile
| | - Patricia Lillo
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, 8380000, Santiago, Chile.,Unidad de Neurología, Hospital San José, 8380000, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), 7800003, Santiago, Chile
| | - Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism (GERO), 7800003, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, Neuroscience and East Neuroscience Departments, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, 8380000, Santiago, Chile.,Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, 7500000, Santiago, Chile.,Departamento de Medicina, Servicio de Neurología, Clínica Alemana-Universidad del Desarrollo, 7550000, Santiago, Chile
| | - Cecilia González Campo
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina.,Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000, Santiago, Chile
| | - Adolfo M García
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina.,Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, 7550000, Santiago, Chile
| |
Collapse
|
6
|
Quabs J, Caspers S, Schöne C, Mohlberg H, Bludau S, Dickscheid T, Amunts K. Cytoarchitecture, probability maps and segregation of the human insula. Neuroimage 2022; 260:119453. [PMID: 35809885 DOI: 10.1016/j.neuroimage.2022.119453] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022] Open
Abstract
The human insular cortex supports multifunctional integration including interoceptive, sensorimotor, cognitive and social-emotional processing. Different concepts of the underlying microstructure have been proposed over more than a century. However, a 3D map of the cytoarchitectonic segregation of the insula in standard reference space, that could be directly linked to neuroimaging experiments addressing different cognitive tasks, is not yet available. Here we analyzed the middle posterior and dorsal anterior insula with image analysis and a statistical mapping procedure to delineate cytoarchitectonic areas in ten human postmortem brains. 3D-probability maps of seven new areas with granular (Ig3, posterior), agranular (Ia1, posterior) and dysgranular (Id2-Id6, middle to dorsal anterior) cytoarchitecture have been calculated to represent the new areas in stereotaxic space. A hierarchical cluster analysis based on cytoarchitecture resulted in three distinct clusters in the superior posterior, inferior posterior and dorsal anterior insula, providing deeper insights into the structural organization of the insula. The maps are openly available to support future studies addressing relations between structure and function in the human insula.
Collapse
Affiliation(s)
- Julian Quabs
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany.
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich Heine University of Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Claudia Schöne
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Katrin Amunts
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| |
Collapse
|
7
|
Fourcade A, Schmidt TT, Nierhaus T, Blankenburg F. Enhanced processing of aversive stimuli on embodied artificial limbs by the human amygdala. Sci Rep 2022; 12:5778. [PMID: 35388047 PMCID: PMC8986852 DOI: 10.1038/s41598-022-09603-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/18/2022] [Indexed: 11/09/2022] Open
Abstract
Body perception has been extensively investigated, with one particular focus being the integration of vision and touch within a neuronal body representation. Previous studies have implicated a distributed network comprising the extrastriate body area (EBA), posterior parietal cortex (PPC) and ventral premotor cortex (PMv) during illusory self-attribution of a rubber hand. Here, we set up an fMRI paradigm in virtual reality (VR) to study whether and how the self-attribution of (artificial) body parts is altered if these body parts are somehow threatened. Participants (N = 30) saw a spider (aversive stimulus) or a toy-car (neutral stimulus) moving along a 3D-rendered virtual forearm positioned like their real forearm, while tactile stimulation was applied on the real arm in the same (congruent) or opposite (incongruent) direction. We found that the PPC was more activated during congruent stimulation; higher visual areas and the anterior insula (aIns) showed increased activation during aversive stimulus presentation; and the amygdala was more strongly activated for aversive stimuli when there was stronger multisensory integration of body-related information (interaction of aversiveness and congruency). Together, these findings suggest an enhanced processing of aversive stimuli within the amygdala when they represent a bodily threat.
Collapse
Affiliation(s)
- Antonin Fourcade
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany. .,Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany. .,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. .,Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Till Nierhaus
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit, Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Agmon G, Bain JS, Deschamps I. Negative polarity in quantifiers evokes greater activation in language-related regions compared to negative polarity in adjectives. Exp Brain Res 2021; 239:1427-1438. [PMID: 33682044 DOI: 10.1007/s00221-021-06067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/16/2021] [Indexed: 11/29/2022]
Abstract
The processing of sentences with negative quantifiers (e.g., few) is more costly than of sentences that contain their positive counterparts (e.g., many). While this polarity effect is robust and reliably replicable, its neurological bases are not well understood. In this study, we use functional magnetic resonance imaging (fMRI) paradigm for 30 participants to assess the polarity effect in sentences with polar quantifiers, and compare it with the polarity effect of polar adjectives. Both in quantifiers and in adjectives, the polarity effect manifests in the anterior insula bilaterally. The polarity effect in quantifiers, however, shows greater activation in the left hemisphere than it does for adjectives. In particular, left inferior frontal gyrus (IFG) and left superior temporal sulcus (STS) show increased activation for polarity in quantifiers than in adjectives, which is the evidence for the specific involvement of the language network in this type of polarity processing. Using the polarity effect in adjectives as a control, we provide further evidence for the linguistic complexity that negative quantifiers implicate on processing.
Collapse
Affiliation(s)
- Galit Agmon
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel. .,The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Building 901, Room 411, 5290002, Ramat Gan, Israel.
| | - Jonathan S Bain
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Deschamps
- School of Human Services and Community Safety, Georgian College, Orillia, ON, Canada
| |
Collapse
|