1
|
Van Overwalle F. Social and emotional learning in the cerebellum. Nat Rev Neurosci 2024:10.1038/s41583-024-00871-5. [PMID: 39433716 DOI: 10.1038/s41583-024-00871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
The posterior cerebellum has a critical role in human social and emotional learning. Three systems and related neural networks support this cerebellar function: a biological action observation system as part of an extended sensorimotor integration network, a mentalizing system for understanding a person's mental and emotional state subserved by a mentalizing network, and a limbic network supporting core emotional (dis)pleasure and arousal processes. In this Review, I describe how these systems and networks support social and emotional learning via functional reciprocal connections initiating and terminating in the posterior cerebellum and cerebral neocortex. It is hypothesized that a major function of the posterior cerebellum is to identify and encode temporal sequences of events, which might help to fine-tune and automatize social and emotional learning. I discuss research using neuroimaging and non-invasive stimulation that provides converging evidence for this hypothesized function of cerebellar sequencing, but also other potential functional accounts of the posterior cerebellum's role in these social and emotional processes.
Collapse
Affiliation(s)
- Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
2
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
3
|
Ciricugno A, Oldrati V, Cattaneo Z, Leggio M, Urgesi C, Olivito G. Cerebellar Neurostimulation for Boosting Social and Affective Functions: Implications for the Rehabilitation of Hereditary Ataxia Patients. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1651-1677. [PMID: 38270782 PMCID: PMC11269351 DOI: 10.1007/s12311-023-01652-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Beyond motor deficits, spinocerebellar ataxia (SCA) patients also suffer cognitive decline and show socio-affective difficulties, negatively impacting on their social functioning. The possibility to modulate cerebello-cerebral networks involved in social cognition through cerebellar neurostimulation has opened up potential therapeutic applications for ameliorating social and affective difficulties. The present review offers an overview of the research on cerebellar neurostimulation for the modulation of socio-affective functions in both healthy individuals and different clinical populations, published in the time period 2000-2022. A total of 25 records reporting either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) studies were found. The investigated clinical populations comprised different pathological conditions, including but not limited to SCA syndromes. The reviewed evidence supports that cerebellar neurostimulation is effective in improving social abilities in healthy individuals and reducing social and affective symptoms in different neurological and psychiatric populations associated with cerebellar damage or with impairments in functions that involve the cerebellum. These findings encourage to further explore the rehabilitative effects of cerebellar neurostimulation on socio-affective deficits experienced by patients with cerebellar abnormalities, as SCA patients. Nevertheless, conclusions remain tentative at this stage due to the heterogeneity characterizing stimulation protocols, study methodologies and patients' samples.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS Mondino Foundation, 27100, Pavia, Italy.
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy.
| | - Viola Oldrati
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Human and Social Sciences, University of Bergamo, 24129, Bergamo, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100, Udine, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| |
Collapse
|
4
|
Haihambo N, Li M, Ma Q, Baeken C, Deroost N, Baetens K, Van Overwalle F. Exciting the social butterfly: Anodal cerebellar transcranial direct current stimulation modulates neural activation during predictive social mentalizing. Int J Clin Health Psychol 2024; 24:100480. [PMID: 39055855 PMCID: PMC11269293 DOI: 10.1016/j.ijchp.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has emerged as a promising tool for enhancing social cognition. The posterior cerebellum, which is part of the mentalizing network, has been implicated in social processes. In our combined tDCS-fMRI study, we investigated the effects of offline anodal cerebellar tDCS on activation in the cerebellum during social action prediction. Forty-one participants were randomly assigned to receive either anodal (2 mA) or sham (0 mA) stimulation over the midline of the posterior cerebellum for 20 min. Twenty minutes post stimulation, participants underwent a functional MRI scan to complete a social action prediction task, during which they had to correctly order randomly presented sentences that described either actions of social agents (based on their personality traits) or events of objects (based on their characteristics). As hypothesized, our results revealed that participants who received anodal cerebellar tDCS exhibited increased activation in the posterior cerebellar Crus 2 and lobule IX, and in key cerebral mentalizing areas, including the medial prefrontal cortex, temporo-parietal junction, and precuneus. Contrary to our hypotheses, participants who received anodal stimulation demonstrated faster responses to non-social objects compared to social agents, while sham participants showed no significant differences. We did not find a significant relationship between electric field magnitude, neural activation and behavioral outcomes. These findings suggest that tDCS targeting the posterior cerebellum selectively enhances activation in social mentalizing areas, while only facilitating behavioral performance of non-social material, perhaps because of a ceiling effect due to familiarity with social processing.
Collapse
Affiliation(s)
- Naem Haihambo
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Centre for Human Brain Health, University of Birmingham, Bochum, Germany
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Meijia Li
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing, China
| | - Qianying Ma
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent Experimental, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Chris Baeken
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
5
|
Ciricugno A, Ferrari C, Battelli L, Cattaneo Z. A chronometric study of the posterior cerebellum's function in emotional processing. Curr Biol 2024; 34:1844-1852.e3. [PMID: 38565141 DOI: 10.1016/j.cub.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The posterior cerebellum is a recently discovered hub of the affective and social brain, with different subsectors contributing to different social functions. However, very little is known about when the posterior cerebellum plays a critical role in social processing. Due to its location and anatomy, it has been difficult to use traditional approaches to directly study the chronometry of the cerebellum. To address this gap in cerebellar knowledge, here we investigated the causal contribution of the posterior cerebellum to social processing using a chronometric transcranial magnetic stimulation (TMS) approach. We show that the posterior cerebellum is recruited at an early stage of emotional processing (starting from 100 ms after stimulus onset), simultaneously with the posterior superior temporal sulcus (pSTS), a key node of the social brain. Moreover, using a condition-and-perturb TMS approach, we found that the recruitment of the pSTS in emotional processing is dependent on cerebellar activation. Our results are the first to shed light on chronometric aspects of cerebellar function and its causal functional connectivity with other nodes of the social brain.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS C. Mondino Foundation, Via Mondino, Pavia 27100, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia 27100, Italy
| | - Chiara Ferrari
- IRCCS C. Mondino Foundation, Via Mondino, Pavia 27100, Italy; Department of Humanities, University of Pavia, Piazza Botta 6, Pavia 27100, Italy
| | - Lorella Battelli
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Kirstein Building KS 158, Boston, MA 02215, USA; Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, Rovereto 38068, Italy
| | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Piazzale S. Agostino 2, Bergamo 24129, Italy.
| |
Collapse
|
6
|
Malatesta G, D'Anselmo A, Prete G, Lucafò C, Faieta L, Tommasi L. The Predictive Role of the Posterior Cerebellum in the Processing of Dynamic Emotions. CEREBELLUM (LONDON, ENGLAND) 2024; 23:545-553. [PMID: 37285048 PMCID: PMC10951036 DOI: 10.1007/s12311-023-01574-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Recent studies have bolstered the important role of the cerebellum in high-level socio-affective functions. In particular, neuroscientific evidence shows that the posterior cerebellum is involved in social cognition and emotion processing, presumably through its involvement in temporal processing and in predicting the outcomes of social sequences. We used cerebellar transcranial random noise stimulation (ctRNS) targeting the posterior cerebellum to affect the performance of 32 healthy participants during an emotion discrimination task, including both static and dynamic facial expressions (i.e., transitioning from a static neutral image to a happy/sad emotion). ctRNS, compared to the sham condition, significantly reduced the participants' accuracy to discriminate static sad facial expressions, but it increased participants' accuracy to discriminate dynamic sad facial expressions. No effects emerged with happy faces. These findings may suggest the existence of two different circuits in the posterior cerebellum for the processing of negative emotional stimuli: a first-time-independent mechanism which can be selectively disrupted by ctRNS, and a second time-dependent mechanism of predictive "sequence detection" which can be selectively enhanced by ctRNS. This latter mechanism might be included among the cerebellar operational models constantly engaged in the rapid adjustment of social predictions based on dynamic behavioral information inherent to others' actions. We speculate that it might be one of the basic principles underlying the understanding of other individuals' social and emotional behaviors during interactions.
Collapse
Affiliation(s)
- Gianluca Malatesta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Anita D'Anselmo
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Chiara Lucafò
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Letizia Faieta
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences - University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
7
|
Oldrati V, Butti N, Ferrari E, Cattaneo Z, Urgesi C, Finisguerra A. Excitatory cerebellar transcranial direct current stimulation boosts the leverage of prior knowledge for predicting actions. Soc Cogn Affect Neurosci 2024; 19:nsae019. [PMID: 38537123 PMCID: PMC11227954 DOI: 10.1093/scan/nsae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 07/09/2024] Open
Abstract
The cerebellum causally supports social processing by generating internal models of social events based on statistical learning of behavioral regularities. However, whether the cerebellum is only involved in forming or also in using internal models for the prediction of forthcoming actions is still unclear. We used cerebellar transcranial Direct Current Stimulation (ctDCS) to modulate the performance of healthy adults in using previously learned expectations in an action prediction task. In a first learning phase of this task, participants were exposed to different levels of associations between specific actions and contextual elements, to induce the formation of either strongly or moderately informative expectations. In a following testing phase, which assessed the use of these expectations for predicting ambiguous (i.e. temporally occluded) actions, we delivered ctDCS. Results showed that anodic, compared to sham, ctDCS boosted the prediction of actions embedded in moderately, but not strongly, informative contexts. Since ctDCS was delivered during the testing phase, that is after expectations were established, our findings suggest that the cerebellum is causally involved in using internal models (and not just in generating them). This encourages the exploration of the clinical effects of ctDCS to compensate poor use of predictive internal models for social perception.
Collapse
Affiliation(s)
- Viola Oldrati
- Scientific Institute, IRCCS E. Medea, Bosisio Parini (LC) 23842, Italy
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, Bosisio Parini (LC) 23842, Italy
- PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, Trieste 34127, Italy
| | | | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Bosisio Parini (LC) 23842, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine 33100, Italy
| | | |
Collapse
|
8
|
Oldrati V, Butti N, Ferrari E, Strazzer S, Romaniello R, Borgatti R, Urgesi C, Finisguerra A. Neurorestorative effects of cerebellar transcranial direct current stimulation on social prediction of adolescents and young adults with congenital cerebellar malformations. Neuroimage Clin 2024; 41:103582. [PMID: 38428326 PMCID: PMC10944181 DOI: 10.1016/j.nicl.2024.103582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Converging evidence points to impairments of the predictive function exerted by the cerebellum as one of the causes of the social cognition deficits observed in patients with cerebellar disorders. OBJECTIVE We tested the neurorestorative effects of cerebellar transcranial direct current stimulation (ctDCS) on the use of contextual expectations to interpret actions occurring in ambiguous sensory sceneries in a sample of adolescents and young adults with congenital, non-progressive cerebellar malformation (CM). METHODS We administered an action prediction task in which, in an implicit-learning phase, the probability of co-occurrence between actions and contextual elements was manipulated to form either strongly or moderately informative expectations. Subsequently, in a testing phase, we probed the use of these contextual expectations for predicting ambiguous (i.e., temporally occluded) actions. In a sham-controlled, within-subject design, participants received anodic or sham ctDCS during the task. RESULTS Anodic ctDCS, compared to sham, improved patients' ability to use contextual expectations to predict the unfolding of actions embedded in moderately, but not strongly, informative contexts. CONCLUSIONS These findings corroborate the role of the cerebellum in using previously learned contextual associations to predict social events and document the efficacy of ctDCS to boost social prediction in patients with congenital cerebellar malformation. The study encourages the further exploration of ctDCS as a neurorestorative tool for the neurorehabilitation of social cognition abilities in neurological, neuropsychiatric, and neurodevelopmental disorders featured by macro- or micro-structural alterations of the cerebellum.
Collapse
Affiliation(s)
- Viola Oldrati
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy.
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy; PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, Via Edoardo Weiss 2, 34128 Trieste, Italy
| | - Elisabetta Ferrari
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Sandra Strazzer
- Scientific Institute, IRCCS E. Medea, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Romina Romaniello
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Renato Borgatti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Via Margreth, 3, 33100 Udine, Italy; Scientific Institute, IRCCS E. Medea, Via Cialdini 29, 33037 Pasian di Prato (UD), Italy
| | - Alessandra Finisguerra
- Scientific Institute, IRCCS E. Medea, Via Cialdini 29, 33037 Pasian di Prato (UD), Italy
| |
Collapse
|
9
|
Bianco V, Finisguerra A, Urgesi C. Contextual Priors Shape Action Understanding before and beyond the Unfolding of Movement Kinematics. Brain Sci 2024; 14:164. [PMID: 38391738 PMCID: PMC10887018 DOI: 10.3390/brainsci14020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Previous studies have shown that contextual information may aid in guessing the intention underlying others' actions in conditions of perceptual ambiguity. Here, we aimed to evaluate the temporal deployment of contextual influence on action prediction with increasing availability of kinematic information during the observation of ongoing actions. We used action videos depicting an actor grasping an object placed on a container to perform individual or interpersonal actions featuring different kinematic profiles. Crucially, the container could be of different colors. First, in a familiarization phase, the probability of co-occurrence between each action kinematics and color cues was implicitly manipulated to 80% and 20%, thus generating contextual priors. Then, in a testing phase, participants were asked to predict action outcome when the same action videos were occluded at five different timeframes of the entire movement, ranging from when the actor was still to when the grasp of the object was fully accomplished. In this phase, all possible action-contextual cues' associations were equally presented. The results showed that for all occlusion intervals, action prediction was more facilitated when action kinematics deployed in high- than low-probability contextual scenarios. Importantly, contextual priors shaped action prediction even in the latest occlusion intervals, where the kinematic cues clearly unveiled an action outcome that was previously associated with low-probability scenarios. These residual contextual effects were stronger in individuals with higher subclinical autistic traits. Our findings highlight the relative contribution of kinematic and contextual information to action understanding and provide evidence in favor of their continuous integration during action observation.
Collapse
Affiliation(s)
- Valentina Bianco
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
| | | | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
- Scientific Institute, IRCCS E. Medea, Pasian di Prato, 33037 Udine, Italy
| |
Collapse
|
10
|
Pezzetta R, Gambarota F, Tarantino V, Devita M, Cattaneo Z, Arcara G, Mapelli D, Masina F. A meta-analysis of non-invasive brain stimulation (NIBS) effects on cerebellar-associated cognitive processes. Neurosci Biobehav Rev 2024; 157:105509. [PMID: 38101590 DOI: 10.1016/j.neubiorev.2023.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques, including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), have provided valuable insights into the role of the cerebellum in cognitive processes. However, replicating findings from studies involving cerebellar stimulation poses challenges. This meta-analysis investigates the impact of NIBS on cognitive processes associated with the cerebellum. We conducted a systematic search and analyzed 66 studies and 91 experiments involving healthy adults who underwent either TMS or transcranial direct current stimulation (tDCS) targeting the cerebellum. The results indicate that anodal tDCS applied to the medial cerebellum enhances cognitive performance. In contrast, high-frequency TMS disrupts cognitive performance when targeting the lateral cerebellar hemispheres or when employed in online protocols. Similarly, low-frequency TMS and continuous theta burst stimulation (cTBS) diminish performance in offline protocols. Moreover, high-frequency TMS impairs accuracy. By identifying consistent effects and moderators of modulation, this meta-analysis contributes to improving the replicability of studies using NIBS on the cerebellum and provides guidance for future research aimed at developing effective NIBS interventions targeting the cerebellum.
Collapse
Affiliation(s)
| | - Filippo Gambarota
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | - Vincenza Tarantino
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Italy
| | - Maria Devita
- Department of General Psychology, University of Padova, Padova, Italy; Geriatrics Unit, Department of Medicine, University of Padova, Padova, Italy.
| | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | | | - Daniela Mapelli
- Department of General Psychology, University of Padova, Padova, Italy
| | | |
Collapse
|
11
|
Hadoush H, Hadoush A. Modulation of Resting-State Brain Complexity After Bilateral Cerebellar Anodal Transcranial Direct Current Stimulation in Children with Autism Spectrum Disorders: a Randomized Controlled Trial Study. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1109-1117. [PMID: 36156195 DOI: 10.1007/s12311-022-01481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders characterized by aberrant neural networks. Cerebellum is best known for its role in controlling motor behaviors; however, recently, there have been significant reports showed that dysfunction in cerebellar-cerebral networks contributes significantly to many of the clinical features of ASD. Hereby, this is a randomized controlled trial (RCT) study examining the potential modulating effects of bilateral anodal tDCS stimulation over cerebellar hemispheres on the resting-state brain complexity in children with ASD. METHODS Thirty-six children with ASD (aged 4-14) years old were divided equally and randomly into a tDCS treatment group, which underwent 10 sessions (20-min duration, five sessions/per week) of bilateral anodal tDCS stimulation applied over left and right cerebellar hemispheres, and control group underwent the same procedures, but with sham tDCS stimulation. Resting-state brain complexity was evaluated through recording and calculating the approximate entropy (ApxEnt) values of the resting-state electroencephalograph (EEG) data obtained from a 64-channel EEG system before and after the interventions. RESULTS Repeated measures of ANOVA showed that tDCS had significant effects on the treatment group (Wilks' Lambda = 0.29, F (15, 16) = 2.67, p = 0.03) compared with the control group. Analyzed data showed a significant increase in the averaged ApxEnt values in the right frontal cortical region (F (1, 16) = 10.46, p = 0.005) after the bilateral cerebellar anodal tDCS stimulation. Besides, the Cohen's d effect size showed a large effect size (0.70-0.92) of bilateral cerebellar anodal tDCS on the ApxEnt values increases in the left and right frontal cortical regions, the right central cortical region, and left parietal cortical region. However, there were no any significant differences or increases in the brain complexity before and after the sham tDCS stimulation of the control group. CONCLUSION Bilateral cerebellar anodal tDCS modulated and increased the brain complexity in children with ASD with no any reported adverse effect. Hereby, cerebellum and cerebellar-cerebral circuitry would serve as a promising target for non-invasive brain stimulation and neuro-modulation as a therapeutic intervention.
Collapse
Affiliation(s)
- Hikmat Hadoush
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Ashraf Hadoush
- Department of Mechanical Engineering, Faculty of Engineering and Technology, Palestine Technical University - Kadoorie, Tulkarm, Palestine
| |
Collapse
|
12
|
Ferrari E, Butti N, Gagliardi C, Romaniello R, Borgatti R, Urgesi C. Cognitive predictors of Social processing in congenital atypical development. J Autism Dev Disord 2023; 53:3343-3355. [PMID: 35729297 DOI: 10.1007/s10803-022-05630-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
According to current accounts of social cognition, the emergence of verbal and non-verbal components of social perception might rely on the acquisition of different cognitive abilities. These components might be differently sensitive to the pattern of neuropsychological impairments in congenital neurodevelopmental disorders. Here, we explored the association between social and non-social cognitive domains by administering subtests of the NEPSY-II battery to 92 patients with Intellectual and Developmental Disability (IDD). Regardless the level of intellectual functioning and presence of congenital brain malformations, results revealed that visuospatial skills predicted emotion recognition and verbal component of Theory of Mind, whereas imitation predicted the non-verbal one. Future interventions might focus on spatial and sensorimotor abilities to boost the development of social cognition in IDD.
Collapse
Affiliation(s)
- Elisabetta Ferrari
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy.
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
- PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Chiara Gagliardi
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
- SPAEE, Catholic University of the Sacred Heart, Milan, Italy
| | - Romina Romaniello
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
| | - Renato Borgatti
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| |
Collapse
|
13
|
Malerba G, Bellazzecca S, Urgesi C, Butti N, D'Angelo MG, Diella E, Biffi E. Is Social Training Delivered with a Head-Mounted Display Suitable for Patients with Hereditary Ataxia? Brain Sci 2023; 13:1017. [PMID: 37508949 PMCID: PMC10376992 DOI: 10.3390/brainsci13071017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Social cognition is fundamental in everyday life to understand "others' behavior", which is a key feature of social abilities. Previous studies demonstrated the efficacy of a rehabilitative intervention in semi-immersive virtual reality (VR) controlled by whole-body motion to improve the ability of patients with cerebellar disorders to predict others' intentions (VR-SPIRIT). Patients with severe ataxia that have difficulties at multiple levels of social processing could benefit from this intervention in terms of improving their social prediction skills, but they may have difficulties in controlling VR with whole-body movements. Therefore, we implemented VR-SPIRIT on a wearable, affordable, and easy-to-use technology, such as the Oculus Quest, a head-mounted display. The aim of this work was to evaluate the usability and tolerability of this VR application. We recruited 10 patients (37.7 ± 14.8 years old, seven males) with different types of hereditary ataxia who performed a single VR-SPIRIT session using the Oculus Quest viewer. After the session, patients answered a series of questionnaires to investigate the overall usability of the system and its potential effects in terms of cyber sickness. The preliminary results demonstrated system usability and tolerability. Indeed, only three patients did not complete the session due to different problems (dizziness, nausea, and boredom). In future studies, more patients will be enrolled to assess the effectiveness of the application, paving the way for the implementation of social training that can also be delivered at home.
Collapse
Affiliation(s)
- Giorgia Malerba
- Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | | | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
- PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Eleonora Diella
- Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
| | - Emilia Biffi
- Scientific Institute, IRCCS E. Medea, 23842 Bosisio Parini, Italy
| |
Collapse
|
14
|
Ciceri T, Malerba G, Gatti A, Diella E, Peruzzo D, Biffi E, Casartelli L. Context expectation influences the gait pattern biomechanics. Sci Rep 2023; 13:5644. [PMID: 37024572 PMCID: PMC10079826 DOI: 10.1038/s41598-023-32665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Beyond classical aspects related to locomotion (biomechanics), it has been hypothesized that walking pattern is influenced by a combination of distinct computations including online sensory/perceptual sampling and the processing of expectations (neuromechanics). Here, we aimed to explore the potential impact of contrasting scenarios ("risky and potentially dangerous" scenario; "safe and comfortable" scenario) on walking pattern in a group of healthy young adults. Firstly, and consistently with previous literature, we confirmed that the scenario influences gait pattern when it is recalled concurrently to participants' walking activity (motor interference). More intriguingly, our main result showed that participants' gait pattern is also influenced by the contextual scenario when it is evoked only before the start of walking activity (motor expectation). This condition was designed to test the impact of expectations (risky scenario vs. safe scenario) on gait pattern, and the stimulation that preceded walking activity served as prior. Noteworthy, we combined statistical and machine learning (Support-Vector Machine classifier) approaches to stratify distinct levels of analyses that explored the multi-facets architecture of walking. In a nutshell, our combined statistical and machine learning analyses converge in suggesting that walking before steps is not just a paradox.
Collapse
Affiliation(s)
- Tommaso Ciceri
- Department of Information Engineering, University of Padova, Padua, PD, Italy
- Neuroimaging Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Giorgia Malerba
- Bioengineering Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Alice Gatti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, MI, Italy
| | - Eleonora Diella
- Bioengineering Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Denis Peruzzo
- Neuroimaging Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Emilia Biffi
- Bioengineering Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy.
| | - Luca Casartelli
- Theoretical and Cognitive Neuroscience Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| |
Collapse
|
15
|
Can transcranial direct current stimulation (tDCS) of the cerebellum improve implicit social and cognitive sequence learning? Int J Clin Health Psychol 2023; 23:100355. [PMID: 36415612 PMCID: PMC9674896 DOI: 10.1016/j.ijchp.2022.100355] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence shows that the posterior cerebellum is involved in mentalizing inferences of social events by detecting sequence information in these events, and building and updating internal models of these sequences. By applying anodal and sham cerebellar transcranial direct current stimulation (tDCS) on the posteromedial cerebellum of healthy participants, and using a serial reaction time (SRT) task paradigm, the current study examined the causal involvement of the cerebellum in implicitly learning sequences of social beliefs of others (Belief SRT) and non-social colored shapes (Cognitive SRT). Apart from the social or cognitive domain differences, both tasks were structurally identical. Results of anodal stimulation (i.e., 2 mA for 20 min) during the social Belief SRT task, did not show significant improvement in reaction times, however it did reveal generally faster responses for the Cognitive SRT task. This improved performance could also be observed after the cessation of stimulation after 30 min, and up to one week later. Our findings suggest a general positive effect of anodal cerebellar tDCS on implicit non-social Cognitive sequence learning, supporting a causal role of the cerebellum in this learning process. We speculate that the lack of tDCS modulation of the social Belief SRT task is due to the familiar and overlearned nature of attributing social beliefs, suggesting that easy and automatized tasks leave little room for improvement through tDCS.
Collapse
|
16
|
Bylemans T, Heleven E, Baetens K, Deroost N, Baeken C, Van Overwalle F. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. Neurosci Biobehav Rev 2023; 146:105045. [PMID: 36646260 DOI: 10.1016/j.neubiorev.2023.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BYLEMANS, T., et al. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. NEUROSCI BIOBEHAV REV, 2022. - This review focuses on autistic adults and serves 4 purposes: (1) providing an overview of their difficulties regarding mentalizing (understanding others' mental states) and narrative coherence (structured storytelling), (2) highlighting the relations between both skills by examining behavioral observations and shared neural substrates, (3) providing an integrated perspective regarding novel diagnostic tools and support services, and (4) raising awareness of adult autism. We suggest that mentalizing and narrative coherence are related at the behavioral level and neural level. In addition to the traditional mentalizing network, the cerebellum probably serves as an important hub in shared cerebral networks implicated in mentalizing and narrative coherence. Future autism research and support services should tackle new questions within a framework of social cerebellar (dys)functioning.
Collapse
Affiliation(s)
- Tom Bylemans
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Elien Heleven
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Kris Baetens
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Natacha Deroost
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Chris Baeken
- Ghent University: Department of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands.
| | - Frank Van Overwalle
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
17
|
Modulating mental state recognition by anodal tDCS over the cerebellum. Sci Rep 2022; 12:22616. [PMID: 36585436 PMCID: PMC9803656 DOI: 10.1038/s41598-022-26914-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence from neuroimaging and clinical studies has demonstrated cerebellar involvement in social cognition components, including the mentalizing process. The aim of this study was to apply transcranial direct current stimulation (tDCS) to modulate cerebellar excitability to investigate the role the cerebellum plays in mental state recognition. Forty-eight healthy subjects were randomly assigned to different groups in which anodal, cathodal, or sham tDCS (2 mA for 20 min) was delivered centering the electrode on the vermis to stimulate the posterior portion of the cerebellum. The ability to attribute mental states to others was tested before and after tDCS using a digital version of the 'Reading the Mind in the Eyes test', which includes visual perceptive and motor stimuli as control conditions. Correct response and reaction times (RTs) were recorded. The results revealed a significant reduction in RTs between the baseline and post-stimulation sessions after cerebellar anodal tDCS only for mental state stimuli (Wilcoxon test p = 0.00055), whereas no significant effect was found in the cathodal or sham conditions or for visual perceptive and motor stimuli. Overall, our study suggests that cerebellar anodal tDCS might selectively improve mental state recognition and constitute an effective strategy to positively modulate the mentalizing process.
Collapse
|
18
|
Pu M, Ma Q, Haihambo N, Li M, Baeken C, Baetens K, Deroost N, Heleven E, Van Overwalle F. Dynamic causal modeling of cerebello-cerebral connectivity when sequencing trait-implying actions. Cereb Cortex 2022; 33:6366-6381. [PMID: 36573440 DOI: 10.1093/cercor/bhac510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
Prior studies suggest that the cerebellum contributes to the prediction of action sequences as well as the detection of social violations. In this dynamic causal modeling study, we explored the effective connectivity of the cerebellum with the cerebrum in processing social action sequences. A first model aimed to explore functional cerebello-cerebral connectivity when learning trait/stereotype-implying action sequences. We found many significant bidirectional connectivities between mentalizing areas of the cerebellum and the cerebrum including the temporo-parietal junction (TPJ) and medial prefrontal cortex (mPFC). Within the cerebrum, we found significant connectivity between the right TPJ and the mPFC, and between the TPJ bilaterally. A second model aimed to investigate cerebello-cerebral connectivity when conflicting information arises. We found many significant closed loops between the cerebellum and cerebral mentalizing (e.g. dorsal mPFC) and executive control areas (e.g. medial and lateral prefrontal cortices). Additional closed loops were found within the cerebral mentalizing and executive networks. The current results confirm prior research on effective connectivity linking the cerebellum with mentalizing areas in the cerebrum for predicting social sequences, and extend it to cerebral executive areas for social violations. Overall, this study emphasizes the critical role of cerebello-cerebral connectivity in understanding social sequences.
Collapse
Affiliation(s)
- Min Pu
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Qianying Ma
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Naem Haihambo
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Meijia Li
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Chris Baeken
- Ghent University Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, , 9000, Ghent , Belgium
- University Hospital (UZBrussel) Department of Psychiatry, , 1090, Brussels , Belgium
- Eindhoven University of Technology , Department of Electrical Engineering, 5612, Eindhoven, Th e Netherlands
| | - Kris Baetens
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Natacha Deroost
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Elien Heleven
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| | - Frank Van Overwalle
- Vrije Universiteit Brussel Faculty of Psychology and Center for Neuroscience, , 1050, Brussels , Belgium
| |
Collapse
|
19
|
Updating implicit contextual priors with explicit learning for the prediction of social and physical events. Brain Cogn 2022; 160:105876. [DOI: 10.1016/j.bandc.2022.105876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022]
|
20
|
Action and emotion perception in Parkinson's disease: A neuroimaging meta-analysis. Neuroimage Clin 2022; 35:103031. [PMID: 35569229 PMCID: PMC9112018 DOI: 10.1016/j.nicl.2022.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
The neural substrates for action and emotion perception deficits in PD are still unclear. We addressed this issue via coordinate-based meta-analyses of previous fMRI data. PD patients exhibit decreased response in the basal ganglia. PD patients exhibit a trend toward decreased response in the parietal areas. PD patients exhibit a trend toward increased activation in the posterior cerebellum.
Patients with Parkinson disease (PD) may show impairments in the social perception. Whether these deficits have been consistently reported, it remains to be clarified which brain alterations subtend them. To this aim, we conducted a neuroimaging meta-analysis to compare the brain activity during social perception in patients with PD versus healthy controls. Our results show that PD patients exhibit a significantly decreased response in the basal ganglia (putamen and pallidum) and a trend toward decreased activity in the mirror system, particularly in the left parietal cortex (inferior parietal lobule and intraparietal sulcus). This reduced activation may be tied to a disruption of cognitive resonance mechanisms and may thus constitute the basis of impaired others’ representations underlying action and emotion perception. We also found increased activation in the posterior cerebellum in PD, although only in a within-group analysis and not in comparison with healthy controls. This cerebellar activation may reflect compensatory mechanisms, an aspect that deserves further investigation. We discuss the clinical implications of our findings for the development of novel social skill training programs for PD patients.
Collapse
|
21
|
Cerebellar Contribution to Emotional Body Language Perception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:141-153. [DOI: 10.1007/978-3-030-99550-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Klaus J, Schutter DJLG. Non-invasive Brain Stimulation of the Cerebellum in Emotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:109-121. [DOI: 10.1007/978-3-030-99550-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
23
|
Gatti D, Rinaldi L, Ferreri L, Vecchi T. The Human Cerebellum as a Hub of the Predictive Brain. Brain Sci 2021; 11:1492. [PMID: 34827491 PMCID: PMC8615481 DOI: 10.3390/brainsci11111492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Although the cerebellum has long been believed to be involved uniquely in sensorimotor processes, recent research works pointed to its participation in a wide range of cognitive predictive functions. Here, we review the available evidence supporting a generalized role of the cerebellum in predictive computation. We then discuss the anatomo-physiological properties that make the cerebellum the ideal hub of the predictive brain. We further argue that cerebellar involvement in cognition may follow a continuous gradient, with higher cerebellar activity occurring for tasks relying more on predictive processes, and outline the empirical scenarios to probe this hypothesis.
Collapse
Affiliation(s)
- Daniele Gatti
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (L.R.); (T.V.)
| | - Luca Rinaldi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (L.R.); (T.V.)
- Cognitive Psychology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Laura Ferreri
- Laboratoire d’Étude des Mécanismes Cognitifs, Université Lumière Lyon 2, 69767 Lyon, France;
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (L.R.); (T.V.)
- Cognitive Psychology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
24
|
Urgesi C, Butti N, Finisguerra A, Biffi E, Valente EM, Romaniello R, Borgatti R. Social prediction in pediatric patients with congenital, non-progressive malformations of the cerebellum: From deficits in predicting movements to rehabilitation in virtual reality. Cortex 2021; 144:82-98. [PMID: 34662720 DOI: 10.1016/j.cortex.2021.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
It has been proposed that impairments of the predictive function exerted by the cerebellum may account for social cognition deficits. Here, we integrated cerebellar functions in a predictive coding framework to elucidate how congenital, non-progressive cerebellar alterations could affect the predictive processing of others' behavior. Experiment 1 demonstrated that cerebellar patients were impaired in relying on contextual information during prediction of other persons' movement, and this impairment was significantly associated with social cognition abilities. Experiment 2 indicated that children and adolescents with congenital, non-progressive cerebellar malformation showed a domain-general deficit in using contextual information to predict both others' movements and physical events, and that this impairment was independent from patients' cognitive abilities. Experiment 3 provided first evidence that a social-prediction training in virtual reality could boost the ability to use context-based predictions to understand others' intentions. These findings shed new light on the predictive role of the cerebellum and its contribution to social cognition, paving the way for new approaches to the rehabilitation of the Cerebellar Cognitive Affective Syndrome.
Collapse
Affiliation(s)
- Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy; Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Italy
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy; PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, Italy.
| | | | - Emilia Biffi
- Scientific Institute, IRCCS E. Medea, Bioengineering Lab, Bosisio Parini, Lecco, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Romina Romaniello
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
| | - Renato Borgatti
- IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Betti S, Finisguerra A, Amoruso L, Urgesi C. Contextual Priors Guide Perception and Motor Responses to Observed Actions. Cereb Cortex 2021; 32:608-625. [PMID: 34297809 DOI: 10.1093/cercor/bhab241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 11/14/2022] Open
Abstract
In everyday-life scenarios, prior expectations provided by the context in which actions are embedded support action prediction. However, it is still unclear how newly learned action-context associations can drive our perception and motor responses. To fill this gap, we measured behavioral (Experiment 1) and motor responses (Experiment 2) during two tasks requiring the prediction of occluded actions or geometrical shapes. Each task consisted of an implicit probabilistic learning and a test phase. During learning, we exposed participants to videos showing specific associations between a contextual cue and a particular action or shape. During the test phase, videos were earlier occluded to reduce the amount of sensorial information and induce participants to use the implicitly learned action/shape-context associations for disambiguation. Results showed that reliable contextual cues made participants more accurate in identifying the unfolding action or shape. Importantly, motor responses were modulated by contextual probability during action, but not shape prediction. Particularly, in conditions of perceptual uncertainty the motor system coded for the most probable action based on contextual informativeness, regardless of action kinematics. These findings suggest that contextual priors can shape motor responses to action observation beyond mere kinematics mapping.
Collapse
Affiliation(s)
- Sonia Betti
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy.,Department of General Psychology, University of Padova, 35131 Padova, Italy
| | | | - Lucia Amoruso
- BCBL, Basque Center on Cognition, Brain and Language, 20009 Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Cosimo Urgesi
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100 Udine, Italy.,Scientific Institute, IRCCS E. Medea, 33037 Pasian di Prato, Udine, Italy
| |
Collapse
|
26
|
New Horizons on Non-invasive Brain Stimulation of the Social and Affective Cerebellum. THE CEREBELLUM 2021; 21:482-496. [PMID: 34270081 DOI: 10.1007/s12311-021-01300-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
The cerebellum is increasingly attracting scientists interested in basic and clinical research of neuromodulation. Here, we review available studies that used either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) to examine the role of the posterior cerebellum in different aspects of social and affective cognition, from mood regulation to emotion discrimination, and from the ability to identify biological motion to higher-level social inferences (mentalizing). We discuss how at the functional level the role of the posterior cerebellum in these different processes may be explained by a generic prediction mechanism and how the posterior cerebellum may exert this function within different cortico-cerebellar and cerebellar limbic networks involved in social cognition. Furthermore, we suggest to deepen our understanding of the cerebro-cerebellar circuits involved in different aspects of social cognition by employing promising stimulation approaches that have so far been primarily used to study cortical functions and networks, such as paired-pulse TMS, frequency-tuned stimulation, state-dependent protocols, and chronometric TMS. The ability to modulate cerebro-cerebellar connectivity opens up possible clinical applications for improving impairments in social and affective skills associated with cerebellar abnormalities.
Collapse
|