1
|
Wu ZM, Wang P, Zhong YY, Liu Y, Liu XC, Wang JJ, Cao XL, Liu L, Sun L, Yang L, Zang YF, Qian Y, Cao QJ, Wang YF, Yang BR. The underlying neuropsychological and neural correlates of the impaired Chinese reading skills in children with attention deficit hyperactivity disorder. Eur Child Adolesc Psychiatry 2024; 33:3979-3992. [PMID: 38662058 PMCID: PMC11588871 DOI: 10.1007/s00787-024-02422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Impaired basic academic skills (e.g., word recognition) are common in children with Attention Deficit Hyperactivity Disorder (ADHD). The underlying neuropsychological and neural correlates of impaired Chinese reading skills in children with ADHD have not been substantially explored. Three hundred and two children with ADHD (all medication-naïve) and 105 healthy controls underwent the Chinese language skill assessment, and 175 also underwent fMRI scans (84 ADHD and 91 controls). Between-group and mediation analyses were applied to explore the interrelationships of the diagnosis of ADHD, cognitive dysfunction, and impaired reading skills. Five ADHD-related brain functional networks, including the default mode network (DMN) and the dorsal attention network (DAN), were built using predefined regions of interest. Voxel-based group-wise comparisons were performed. The ADHD group performed worse than the control group in word-level reading ability tests, with lower scores in Chinese character recognition (CR) and word chains (WS) (all P < 0.05). With full-scale IQ and sustained attention in the mediation model, the direct effect of ADHD status on the CR score became insignificant (P = 0.066). The underlying neural correlates for the orthographic knowledge (OT) and CR differed between the ADHD and the control group. The ADHD group tended to recruit more DMN regions to maintain their reading performance, while the control group seemed to utilize more DAN regions. Children with ADHD generally presented impaired word-level reading skills, which might be caused by impaired sustained attention and lower IQ. According to the brain functional results, we infer that ADHD children might utilize a different strategy to maintain their orthographic knowledge and character recognition performance.
Collapse
Affiliation(s)
- Zhao-Min Wu
- Shenzhen Childrens Hospital, Shenzhen, China.
- Shenzhen Pediatrics Institute of Shantou University Medical College, Shenzhen, China.
| | | | | | - Yun Liu
- Shenzhen Childrens Hospital, Shenzhen, China
| | | | - Jiu-Ju Wang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | | | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Li Yang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yu-Feng Zang
- Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Qian
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Qing-Jiu Cao
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Yu-Feng Wang
- Peking University Sixth Hospital/Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | | |
Collapse
|
2
|
Zhang M, Liu Z, Botezatu MR, Dang Q, Yuan Q, Han J, Liu L, Guo T. A large-scale database of Chinese characters and words collected from elementary school textbooks. Behav Res Methods 2024; 56:4732-4757. [PMID: 37620745 DOI: 10.3758/s13428-023-02214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/26/2023]
Abstract
Lexical databases are essential tools for studies on language processing and acquisition. Most previous Chinese lexical databases have focused on materials for adults, yet little is known about reading materials for children and how lexical properties from these materials affect children's reading comprehension. In the present study, we provided the first large database of 2999 Chinese characters and 2182 words collected from the official textbooks recently issued by the Ministry of Education (MOE) of the People's Republic of China for most elementary schools in Mainland China, as well as norms from both school-aged children and adults. The database incorporates key orthographic, phonological, and semantic factors from these lexical units. A word-naming task was used to investigate the effects of these factors in character and word processing in both adults and children. The results suggest that: (1) as the grade level increases, visual complexity of those characters and words increases whereas semantic richness and frequency decreases; (2) the effects of lexical predictors on processing both characters and words vary across children and adults; (3) the effect of age of acquisition shows different patterns on character and word-naming performance. The database is available on Open Science Framework (OSF) ( https://osf.io/ynk8c/?view_only=5186bd68549340bd923e9b6531d2c820 ) for future studies on Chinese language development.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zeping Liu
- Department of East Asian Languages and Cultures, Indiana University, Bloomington, IN, USA
| | - Mona Roxana Botezatu
- Department of Speech, Language and Hearing Sciences, University of Missouri, Columbia, MO, USA
| | - Qinpu Dang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qiming Yuan
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jinzhuo Han
- Chinese Language and Culture College, Beijing Normal University, Beijing, 100875, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Taomei Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Dang Q, Ma F, Yuan Q, Fu Y, Chen K, Zhang Z, Lu C, Guo T. Processing negative emotion in two languages of bilinguals: Accommodation and assimilation of the neural pathways based on a meta-analysis. Cereb Cortex 2023:7133665. [PMID: 37083264 DOI: 10.1093/cercor/bhad121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
Numerous functional magnetic resonance imaging (fMRI) studies have examined the neural mechanisms of negative emotional words, but scarce evidence is available for the interactions among related brain regions from the functional brain connectivity perspective. Moreover, few studies have addressed the neural networks for negative word processing in bilinguals. To fill this gap, the current study examined the brain networks for processing negative words in the first language (L1) and the second language (L2) with Chinese-English bilinguals. To identify objective indicators associated with negative word processing, we first conducted a coordinate-based meta-analysis on contrasts between negative and neutral words (including 32 contrasts from 1589 participants) using the activation likelihood estimation method. Results showed that the left medial prefrontal cortex (mPFC), the left inferior frontal gyrus (IFG), the left posterior cingulate cortex (PCC), the left amygdala, the left inferior temporal gyrus (ITG), and the left thalamus were involved in processing negative words. Next, these six clusters were used as regions of interest in effective connectivity analyses using extended unified structural equation modeling to pinpoint the brain networks for bilingual negative word processing. Brain network results revealed two pathways for negative word processing in L1: a dorsal pathway consisting of the left IFG, the left mPFC, and the left PCC, and a ventral pathway involving the left amygdala, the left ITG, and the left thalamus. We further investigated the similarity and difference between brain networks for negative word processing in L1 and L2. The findings revealed similarities in the dorsal pathway, as well as differences primarily in the ventral pathway, indicating both neural assimilation and accommodation across processing negative emotion in two languages of bilinguals.
Collapse
Affiliation(s)
- Qinpu Dang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Fengyang Ma
- School of Education, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Qiming Yuan
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yongben Fu
- The Psychological Education and Counseling Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Keyue Chen
- Division of Psychology and Language Sciences, University College London, London WC1E 6BT, UK
| | - Zhaoqi Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| | - Taomei Guo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Wang Y, Bao W, Li H, Luo J. The disappearance of intuitive dominance? The effect of schema on intuitive processing. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Liu Z, Li J, Bi HY, Xu M, Yang Y. Disruption of Functional Brain Networks Underlies the Handwriting Deficit in Children With Developmental Dyslexia. Front Neurosci 2022; 16:919440. [PMID: 35924227 PMCID: PMC9339653 DOI: 10.3389/fnins.2022.919440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Developmental dyslexia (DD) is a neurological-based learning disorder that affects 5-17.5% of children. Handwriting difficulty is a prevailing symptom of dyslexia, but its neural mechanisms remain elusive. Using functional magnetic resonance imaging (fMRI), this study examined functional brain networks associated with handwriting in a copying task in Chinese children with DD (n = 17) and age-matched children (n = 36). We found that dyslexics showed reduced network connectivity between the sensory-motor network (SMN) and the visual network (VN), and between the default mode network (DMN) and the ventral attention network (VAN) during handwriting, but not during drawing geometric figures. Moreover, the connectivity strength of the networks showing group differences was correlated with handwriting speed, reading and working memory, suggesting that the handwriting deficit in DD is linked with disruption of a large-scale brain network supporting motoric, linguistic and executive control processes. Taken together, this study demonstrates the alternations of functional brain networks that underly the handwriting deficit in Chinese dyslexia, providing a new clue for the neural basis of DD.
Collapse
Affiliation(s)
- Zhengyan Liu
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Shenzhen University, Shenzhen, China
- *Correspondence: Min Xu,
| | - Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Yang Yang,
| |
Collapse
|
6
|
Al-Dokhny AA, Bukhamseen AM, Drwish AM. Influence of assistive technology applications on dyslexic students: The case of Saudi Arabia during the COVID-19 pandemic. EDUCATION AND INFORMATION TECHNOLOGIES 2022; 27:12213-12249. [PMID: 35668902 PMCID: PMC9136755 DOI: 10.1007/s10639-022-11090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/01/2022] [Indexed: 06/12/2023]
Abstract
In Saudi Arabia, the COVID-19 pandemic forced students with dyslexia to complete their learning through online applications, like their peers without dyslexia. This study explores the influence of assistive technology (AT) on improving the visual perception (VP) and phonological processing (PhP) abilities of students with dyslexia. Three learning applications were used (Google Classroom, Zoom, and Quizlet) as AT platforms. A quantitative approach was adopted based on a quasi-experimental design. Single-subject experimental methods were used to examine the influence of AT on improving students' VP, PhP, and frequency of access (FA). Fourteen students with dyslexia who were selected as participants through purposeful sampling were divided into two experimental groups based on gender. The results showed that AT influenced the VP, PhP, and FA in both experimental groups. Girls scored higher than boys in VP, PhP, and FA, and a positive correlation was found between VP and PhP with AT applications among girls and boys. A simple linear regression analysis showed that a significant and positive relationship exists between FA and the VP and PhP abilities of students with dyslexia through AT applications.
Collapse
|
7
|
Yang Y, Zuo Z, Tam F, Graham SJ, Li J, Ji Y, Meng Z, Gu C, Bi HY, Ou J, Xu M. The brain basis of handwriting deficits in Chinese children with developmental dyslexia. Dev Sci 2021; 25:e13161. [PMID: 34288292 PMCID: PMC9286553 DOI: 10.1111/desc.13161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Abundant behavioral studies have demonstrated high comorbidity of reading and handwriting difficulties in developmental dyslexia (DD), a neurological condition characterized by unexpectedly low reading ability despite adequate nonverbal intelligence and typical schooling. The neural correlates of handwriting deficits remain largely unknown; however, as well as the extent that handwriting deficits share common neural bases with reading deficits in DD. The present work used functional magnetic resonance imaging to examine brain activity during handwriting and reading tasks in Chinese dyslexic children (n = 18) and age-matched controls (n = 23). Compared to controls, dyslexic children exhibited reduced activation during handwriting tasks in brain regions supporting sensory-motor processing (including supplementary motor area and postcentral gyrus) and visual-orthography processing (including bilateral precuneus and right cuneus). Among these regions, the left supplementary motor area and the right precuneus also showed a trend of reduced activation during reading tasks in dyslexics. Moreover, increased activation was found in the left inferior frontal gyrus and anterior cingulate cortex in dyslexics, which may reflect more efforts of executive control to compensate for the impairments of motor and visual-orthographic processing. Finally, dyslexic children exhibited aberrant functional connectivity among brain areas for cognitive control and sensory-motor processes during handwriting tasks. Together, these findings suggest that handwriting deficits in DD are associated with functional abnormalities of multiple brain regions implicated in motor execution, visual-orthographic processing, and cognitive control, providing important implications for the diagnosis and treatment of dyslexia.
Collapse
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Junjun Li
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhu Ji
- Department of Psychology, College of Education, Zhejiang University of Technology, Hangzhou, China
| | - Zelong Meng
- Department of Psychology, School of Humanities and Social Sciences, Beijing Forestry University, Beijing, China
| | - Chanyuan Gu
- Department of Chinese and Bilingual Studies, Faculty of Humanities, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology,Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Ou
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Min Xu
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China.,Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|