1
|
Osvath M, Němec P, Brusatte SL, Witmer LM. Thought for food: the endothermic brain hypothesis. Trends Cogn Sci 2024; 28:998-1010. [PMID: 39242238 DOI: 10.1016/j.tics.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The evolution of whole-body endothermy occurred independently in dinosaurs and mammals and was associated with some of the most significant neurocognitive shifts in life's history. These included a 20-fold increase in neurons and the evolution of new brain structures, supporting similar functions in both lineages. We propose the endothermic brain hypothesis, which holds that elaborations in endotherm brains were geared towards increasing caloric intake through efficient foraging. The hypothesis is grounded in the intrinsic coupling of cognition and organismic self-maintenance. We argue that coevolution of increased metabolism and new forms of cognition should be jointly investigated in comparative studies of behaviors and brain anatomy, along with studies of fossil species. We suggest avenues for such research and highlight critical open questions.
Collapse
Affiliation(s)
- Mathias Osvath
- Department of Philosophy, Division of Cognitive Science, The Cognitive Zoology Group, Lund University, Box 192, 221 00, Lund, Sweden.
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Stephen L Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh EH9 3FE, UK
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
2
|
York AR, Sherwood CC, Manger PR, Kaas JH, Mota B, Herculano-Houzel S. Folding of the cerebellar cortex is clade-specific in form but universal in degree. J Comp Neurol 2024; 532:e25616. [PMID: 38634526 DOI: 10.1002/cne.25616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Like the cerebralcortex, the surface of the cerebellum is repeatedly folded. Unlike the cerebralcortex, however, cerebellar folds are much thinner and more numerous; repeatthemselves largely along a single direction, forming accordion-like folds transverseto the mid-sagittal plane; and occur in all but the smallest cerebella. We haveshown previously that while the location of folds in mammalian cerebral cortex isclade-specific, the overall degree of folding strictly follows a universalpower law relating cortical thickness and the exposed and total surface areas predictedfrom the minimization of the effective free energy of an expanding, self-avoidingsurface of a certain thickness. Here we show that this scaling law extends tothe folding of the mid-sagittal sections of the cerebellum of 53 speciesbelonging to six mammalian clades. Simultaneously, we show that each clade hasa previously unsuspected distinctive spatial pattern of folding evident at themid-sagittal surface of the cerebellum. We note, however, that the mammaliancerebellum folds as a multi-fractal object, because of the difference betweenthe outside-in development of the cerebellar cortex around a preexisting coreof already connected white matter, compared to the inside-out development ofthe cerebral cortex with a white matter volume that develops as the cerebralcortex itself gains neurons. We conclude that repeated folding, one of the mostrecognizable features of biology, can arise simply from the interplay betweenthe universal applicability of the physics of self-organization and biological,phylogenetical clade-specific contingency, without the need for invokingselective pressures in evolution.
Collapse
Affiliation(s)
- Annaleigh R York
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Bruno Mota
- Institute of Physics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Güntürkün O, Pusch R, Rose J. Why birds are smart. Trends Cogn Sci 2024; 28:197-209. [PMID: 38097447 PMCID: PMC10940863 DOI: 10.1016/j.tics.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 03/08/2024]
Abstract
Many cognitive neuroscientists believe that both a large brain and an isocortex are crucial for complex cognition. Yet corvids and parrots possess non-cortical brains of just 1-25 g, and these birds exhibit cognitive abilities comparable with those of great apes such as chimpanzees, which have brains of about 400 g. This opinion explores how this cognitive equivalence is possible. We propose four features that may be required for complex cognition: a large number of associative pallial neurons, a prefrontal cortex (PFC)-like area, a dense dopaminergic innervation of association areas, and dynamic neurophysiological fundaments for working memory. These four neural features have convergently evolved and may therefore represent 'hard to replace' mechanisms enabling complex cognition.
Collapse
Affiliation(s)
- Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany.
| | - Roland Pusch
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
4
|
Heuer K, Traut N, de Sousa AA, Valk SL, Clavel J, Toro R. Diversity and evolution of cerebellar folding in mammals. eLife 2023; 12:e85907. [PMID: 37737580 PMCID: PMC10617990 DOI: 10.7554/elife.85907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023] Open
Abstract
The process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution. We constituted an open collection of histological data from 56 mammalian species and manually segmented the cerebrum and the cerebellum. We developed methods to measure the geometry of cerebellar folia and to estimate the thickness of the molecular layer. We used phylogenetic comparative methods to study the diversity and evolution of cerebellar folding and its relationship with the anatomy of the cerebrum. Our results show that the evolution of cerebellar and cerebral anatomy follows a stabilising selection process. We observed two groups of phenotypes changing concertedly through evolution: a group of 'diverse' phenotypes - varying over several orders of magnitude together with body size, and a group of 'stable' phenotypes varying over less than 1 order of magnitude across species. Our analyses confirmed the strong correlation between cerebral and cerebellar volumes across species, and showed in addition that large cerebella are disproportionately more folded than smaller ones. Compared with the extreme variations in cerebellar surface area, folial anatomy and molecular layer thickness varied only slightly, showing a much smaller increase in the larger cerebella. We discuss how these findings could provide new insights into the diversity and evolution of cerebellar folding, the mechanisms of cerebellar and cerebral folding, and their potential influence on the organisation of the brain across species.
Collapse
Affiliation(s)
- Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et ThéoriqueParisFrance
| | - Nicolas Traut
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et ThéoriqueParisFrance
| | | | - Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ JülichJülichGermany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Julien Clavel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNAVilleurbanneFrance
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et ThéoriqueParisFrance
| |
Collapse
|
5
|
Wylie DR, Gaede AH, Gutiérrez-Ibáñez C, Wu PH, Pilon MC, Azargoon S, Altshuler DL. Topography of optic flow processing in olivo-cerebellar pathways in zebra finches (Taeniopygia guttata). J Comp Neurol 2023; 531:640-662. [PMID: 36648211 DOI: 10.1002/cne.25454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
In birds, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali (LM) are brainstem nuclei involved in the analysis of optic flow. A major projection site of both nBOR and LM is the medial column of the inferior olive (IO), which provides climbing fibers to the vestibulocerebellum. This pathway has been well documented in pigeons, but not other birds. Recent works have highlighted that zebra finches show specializations with respect to optic flow processing, which may be reflected in the organization of optic flow pathways to the IO. In this study, we characterized the organization of these pathways in zebra finches. We found that the medial column consists of at least eight subnuclei (i-viii) visible in Nissl-stained tissue. Using anterograde traces we found that the projections from LM and nBOR to the IO were bilateral, but heavier to the ipsilateral side, and showed a complementary pattern: LM projected to subnucleus i, whereas nBOR projected to subnuclei ii and v. Using retrograde tracers, we found that these subnuclei (i, ii and v) projected to the vestibulocerebellum (folia IXcd and X), whereas the other subnuclei projected to IXab and the lateral margin of VII and VIII. The nBOR also projected ipsilaterally to the caudo-medial dorsal lamella of the IO, which the retrograde experiments showed as projecting to the medial margin of VII and VIII. We compare these results with previous studies in other avian species.
Collapse
Affiliation(s)
- Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea H Gaede
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Pei-Hsuan Wu
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madison C Pilon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sarina Azargoon
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Douglas L Altshuler
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Cunha F, Stingo-Hirmas D, Cardoso RF, Wright D, Henriksen R. Neuronal and non-neuronal scaling across brain regions within an intercross of domestic and wild chickens. Front Neuroanat 2022; 16:1048261. [PMID: 36506870 PMCID: PMC9732670 DOI: 10.3389/fnana.2022.1048261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022] Open
Abstract
The allometric scaling of the brain size and neuron number across species has been extensively studied in recent years. With the exception of primates, parrots, and songbirds, larger brains have more neurons but relatively lower neuronal densities than smaller brains. Conversely, when considering within-population variability, it has been shown that mice with larger brains do not necessarily have more neurons but rather more neurons in the brain reflect higher neuronal density. To what extent this intraspecific allometric scaling pattern of the brain applies to individuals from other species remains to be explored. Here, we investigate the allometric relationships among the sizes of the body, brain, telencephalon, cerebellum, and optic tectum, and the numbers of neurons and non-neuronal cells of the telencephalon, cerebellum, and optic tectum across 66 individuals originated from an intercross between wild and domestic chickens. Our intercross of chickens generates a population with high variation in brain size, making it an excellent model to determine the allometric scaling of the brain within population. Our results show that larger chickens have larger brains with moderately more neurons and non-neuronal cells. Yet, absolute number of neurons and non-neuronal cells correlated strongly and positively with the density of neurons and non-neuronal cells, respectively. As previously shown in mice, this scaling pattern is in stark contrast with what has been found across different species. Our findings suggest that neuronal scaling rules across species are not a simple extension of the neuronal scaling rules that apply within a species, with important implications for the evolutionary developmental origins of brain diversity.
Collapse
|
7
|
Stingo-Hirmas D, Cunha F, Cardoso RF, Carra LG, Rönnegård L, Wright D, Henriksen R. Proportional Cerebellum Size Predicts Fear Habituation in Chickens. Front Physiol 2022; 13:826178. [PMID: 35250629 PMCID: PMC8891606 DOI: 10.3389/fphys.2022.826178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum has a highly conserved neural structure across species but varies widely in size. The wide variation in cerebellar size (both absolute and in proportion to the rest of the brain) among species and populations suggests that functional specialization is linked to its size. There is increasing recognition that the cerebellum contributes to cognitive processing and emotional control in addition to its role in motor coordination. However, to what extent cerebellum size reflects variation in these behavioral processes within species remains largely unknown. By using a unique intercross chicken population based on parental lines with high divergence in cerebellum size, we compared the behavior of individuals repeatedly exposed to the same fear test (emergence test) early in life and after sexual maturity (eight trials per age group) with proportional cerebellum size and cerebellum neural density. While proportional cerebellum size did not predict the initial fear response of the individuals (trial 1), it did increasingly predict adult individuals response as the trials progressed. Our results suggest that proportional cerebellum size does not necessarily predict an individual’s fear response, but rather the habituation process to a fearful stimulus. Cerebellum neuronal density did not predict fear behavior in the individuals which suggests that these effects do not result from changes in neuronal density but due to other variables linked to proportional cerebellum size which might underlie fear habituation.
Collapse
Affiliation(s)
| | - Felipe Cunha
- IFM-Biology, Linköping University, Linköping, Sweden
| | | | | | - Lars Rönnegård
- School of Technology and Business Studies, Dalarna University, Falun, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Rie Henriksen
- IFM-Biology, Linköping University, Linköping, Sweden
- *Correspondence: Rie Henriksen,
| |
Collapse
|