1
|
Flønes IH, Toker L, Sandnes DA, Castelli M, Mostafavi S, Lura N, Shadad O, Fernandez-Vizarra E, Painous C, Pérez-Soriano A, Compta Y, Molina-Porcel L, Alves G, Tysnes OB, Dölle C, Nido GS, Tzoulis C. Mitochondrial complex I deficiency stratifies idiopathic Parkinson's disease. Nat Commun 2024; 15:3631. [PMID: 38684731 PMCID: PMC11059185 DOI: 10.1038/s41467-024-47867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.
Collapse
Affiliation(s)
- Irene H Flønes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Lilah Toker
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Dagny Ann Sandnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Martina Castelli
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Sepideh Mostafavi
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Njål Lura
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Omnia Shadad
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
- Veneto Institute of Molecular Medicine, 35131, Padova, Italy
| | - Cèlia Painous
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alexandra Pérez-Soriano
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
- UParkinson - Sinapsi Neurología, Centre Mèdic Teknon Grup Hospitalari Quirón Salud, Barcelona, Spain
| | - Yaroslau Compta
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Molina-Porcel
- Alzheimer's disease and other cognitive disorders unit. Neurology Service, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Pb 8100, 4068, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, 4062, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Gonzalo S Nido
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway.
| |
Collapse
|
2
|
Huang AQ, Liu SY, Barret O, Qiao HW, Tamagnan GD, Liu XL, Fan CC, Li Z, Lu J, Chan P, Xu EH. 18F-FP-DTBZ PET/CT detectable associations between monoaminergic depletion in the putamen with rigidity and the pallidus with tremor in Parkinson's disease. Parkinsonism Relat Disord 2024; 120:105979. [PMID: 38241952 DOI: 10.1016/j.parkreldis.2023.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
INTRODUCTION The motor subtypes of Parkinson's disease (PD) are widely accepted and implemented. However, the motor subtypes have been thought to represent different stages of PD recently because some patients experience tremor-dominant (TD) conversion to the non-tremor-dominant subtype, such as postural instability-gait difficulty (PIGD). In this study, we explore the monoaminergic denervation features of the striatal and extra-striatal areas in patients with different subtypes of PD with 18F-9-fluoropropyl-(+)-dihydrotetrabenazine (18F-FP-DTBZ) PET/CT. METHODS Sixty-five patients diagnosed with PD were included and classified as TD (n = 25) and PIGD (n = 40). We evaluated the difference of monoaminergic features of each subregion of brain between motor subtypes of PD, as well as associations between these features and Parkinsonian motor symptoms. RESULTS The striatal standardized uptake value ratios (SUVR) showed that dopaminergic disruption of patients with PIGD was more symmetrical in the posterior ventral putamen (p < 0.001) and more severe in the ipsilateral posterior dorsal putamen (p < 0.001 corrected) compared with that of patients with TD. The severity of PIGD scores was associated with striatal dopaminergic depletion, while tremor was associated with monoaminergic changes in extra-striatal areas, including pallidus, thalamus, and raphe nuclie. CONCLUSION These results indicate that patients with different motor subtypes may have different underlying mechanisms of PD pathogenesis. Therefore, accurate diagnosis of PD subtypes can aid prognosis evaluation and treatment decision-making.
Collapse
Affiliation(s)
- An-Qi Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu-Ying Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Olivier Barret
- University of Paris-Saclay, The French Alternative Energies and Atomic Energy Commission, The French National Center for Scientific Research, Molecular Imaging Research Center, Laboratory of Neurodegenerative Diseases, Fontenay-aux-Roses, France
| | - Hong-Wen Qiao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gilles D Tamagnan
- Mental Health PET Radioligand Development Program, Yale University, New Haven, USA; Xingimaging, 150 Boston Post Road, Madison, LCC, Connecticut, USA
| | - Xiu-Lin Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cheng-Cheng Fan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ze Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Er-He Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Lakhani DA, Zhou X, Tao S, Patel V, Wen S, Okromelidze L, Greco E, Lin C, Westerhold EM, Straub S, Wszolek ZK, Tipton PW, Uitti RJ, Grewal SS, Middlebrooks EH. Diagnostic utility of 7T neuromelanin imaging of the substantia nigra in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:13. [PMID: 38191546 PMCID: PMC10774294 DOI: 10.1038/s41531-024-00631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes. A retrospective case-control study was conducted including PD patients, ET patients, and controls. 7T NM-sensitive 3D-GRE was acquired, and substantia nigra pars compacta (SNpc) volumes, contrast ratios, and asymmetry indices were calculated. Statistical analyses, including general linear models and ROC curves, were employed. Twenty-one PD patients, 13 ET patients, and 18 controls were assessed. PD patients exhibited significantly lower SNpc volumes compared to non-PD subjects. SNpc total volume showed 100% sensitivity and 96.8% specificity (AUC = 0.998) for differentiating PD from non-PD and 100% sensitivity and 95.2% specificity (AUC = 0.996) in differentiating PD from ET. Contrast ratio was not significantly different between PD and non-PD groups (p = 0.07). There was also significantly higher asymmetry index in SNpc volume in PD compared to non-PD cohorts (p < 0.001). NM signal loss in PD predominantly involved the inferior, posterior, and lateral aspects of SNpc. Akinetic-rigid subtype showed more significant NM signal loss compared to tremor dominant subtype (p < 0.001). 7T NM imaging demonstrates potential as a diagnostic tool for PD, including potential distinction between subtypes, allowing improved understanding of disease progression and subtype-related characteristics.
Collapse
Affiliation(s)
- Dhairya A Lakhani
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Xiangzhi Zhou
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Shengzhen Tao
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Vishal Patel
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Sijin Wen
- Department of Biostatistics, West Virginia University, Morgantown, WV, USA
| | | | - Elena Greco
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Chen Lin
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
5
|
Biswas D, Banerjee R, Sarkar S, Choudhury S, Sanyal P, Tiwari M, Kumar H. Nigrosome and Neuromelanin Imaging as Tools to Differentiate Parkinson's Disease and Parkinsonism. Ann Indian Acad Neurol 2022; 25:1029-1035. [PMID: 36911494 PMCID: PMC9996486 DOI: 10.4103/aian.aian_285_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) lacks a definitive diagnosis due to a lack of pathological validation of patients at antemortem. The risk of misdiagnosis is high in the early stages of PD, often eluded by atypical parkinsonian symptoms. Neuroimaging and laboratory biomarkers are being sought to aid in the clinical diagnosis of PD. Nigrosome imaging and neuromelanin (NM)-sensitive magnetic resonance imaging (MRI) are the new emerging tools, both technically simple plus cost-effective for studying nigral pathology, and have shown potential for authenticating the clinical diagnosis of PD. Visual assessment of the nigrosome-1 appearance, at 3 or 7 Tesla, yields excellent diagnostic accuracy for differentiating idiopathic PD from healthy controls. Moreover, midbrain atrophy and putaminal hypointensity in nigrosome-1 imaging are valid pointers in distinguishing PD from allied parkinsonian disorders. The majority of studies employed T2 and susceptibility-weighted imaging MRI sequences to visualize nigrosome abnormalities, whereas T1-weighted fast-spin echo sequences were used for NM imaging. The diagnostic performance of NM-sensitive MRI in discriminating PD from normal HC can be improved further. Longitudinal studies with adequate sampling of varied uncertain PD cases should be designed to accurately evaluate the sensitivity and diagnostic potential of nigrosome and NM imaging techniques. Equal weightage is to be given to uniformity and standardization of protocols, data analysis, and interpretation of results. There is tremendous scope for identifying disease-specific structural changes in varied forms of parkinsonism with these low-cost imaging tools. Nigrosome-1 and midbrain NM imaging may not only provide an accurate diagnosis of PD but could mature into tools for personally tailored treatment and prognosis.
Collapse
Affiliation(s)
- Deblina Biswas
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, West Bengal, India
| | - Rebecca Banerjee
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, West Bengal, India
| | - Swagata Sarkar
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, West Bengal, India
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Supriyo Choudhury
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, West Bengal, India
| | - Pritimoy Sanyal
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | - Mona Tiwari
- Department of Radiology, Institute of Neurosciences, Kolkata, West Bengal, India
| | - Hrishikesh Kumar
- Department of Neurology, Institute of Neurosciences Kolkata, Kolkata, West Bengal, India
| |
Collapse
|