1
|
Saini I, Joshi J, Kaur S. Unleashing the role of potential adjuvants in leishmaniasis. Int J Pharm 2025; 669:125077. [PMID: 39675537 DOI: 10.1016/j.ijpharm.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Leishmaniasis is amongst one of the most neglected tropical disease, caused by an intracellular protozoan of genus Leishmania. Currently, the most promising strategy to combat leishmaniasis, relies on chemotherapy but the toxicity and increasing resistance of the standard drugs, presses the demand for new alternatives. Immunization is arguably the best strategy for cure because an individual once infected becomes immune to the disease. Yet, there is no efficient vaccine capable of providing enduring immunity against the parasite. Achieving the goal of developing highly efficacious and durable vaccine is limited due to lack of an appropriate adjuvant. Adjuvants are recognized as 'immune potentiators' which redirect or amplify the immune response. A number of adjuvants like alum, MPL-A, CpG ODN, GLA-SE, imiquimod, saponins etc. have been used in combination with various classes of Leishmania antigens. However, only few have reached clinical trials. Thus, the choice of an adjuvant is critically dependent on many factors such as the route of administration, the nature of antigen, formulation, the type of required immune response, their mode of action and the immunization schedule. This review provides an updated status on the types of adjuvants used in leishmaniasis so far and their mechanism of action if known.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Saini I, Joshi J, Kaur S. Leishmania vaccine development: A comprehensive review. Cell Immunol 2024; 399-400:104826. [PMID: 38669897 DOI: 10.1016/j.cellimm.2024.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Infectious diseases like leishmaniasis, malaria, HIV, tuberculosis, leprosy and filariasis are responsible for an immense burden on public health systems. Among these, leishmaniasis is under the category I diseases as it is selected by WHO (World Health Organization) on the ground of diversity and complexity. High cost, resistance and toxic effects of Leishmania traditional drugs entail identification and development of therapeutic alternative. Since the natural infection elicits robust immunity, consistence efforts are going on to develop a successful vaccine. Clinical trials have been conducted on vaccines like Leish-F1, F2, and F3 formulated using specific Leishmania antigen epitopes. Current strategies utilize individual or combined antigens from the parasite or its insect vector's salivary gland extract, with or without adjuvant formulation for enhanced efficacy. Promising animal data supports multiple vaccine candidates (Lmcen-/-, LmexCen-/-), with some already in or heading for clinical trials. The crucial challenge in Leishmania vaccine development is to translate the research knowledge into affordable and accessible control tools that refines the outcome for those who are susceptible to infection. This review focuses on recent findings in Leishmania vaccines and highlights difficulties facing vaccine development and implementation.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
3
|
Potential of TLR agonist as an adjuvant in Leishmania vaccine against visceral leishmaniasis in BALB/c mice. Microb Pathog 2021; 158:105021. [PMID: 34089789 DOI: 10.1016/j.micpath.2021.105021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/24/2021] [Accepted: 05/26/2021] [Indexed: 11/21/2022]
Abstract
Morbid infection of leishmaniasis is posing threat to humankind due to its exacerbating prevalence in newer emerging areas. Moreover, the availability of limited drugs, their toxicity, limited efficacy, the emergence of drug resistance, and unavailability of vaccines are the major obstacles in its elimination. This implies the demand for a prophylactic vaccine candidate to prevent this infection and resulting fatal disease. We evaluated gardiquimod (a toll-like receptor-7 agonist) for its action as an adjuvant with the heat-killed antigen of Leishmania donovani. BALB/c mice were immunized with a vaccine either with or without adjuvant and given challenge infection. The results depicted the low parasite burden, higher delayed-type hypersensitivity response, and higher levels of IgG2a, Th1 cytokines, and NO in immunized mice in contrast to infected control mice. Low levels of Th2 cytokines and IgG1 were also noticed in the vaccinated mice than in infected mice. The mice immunized with a combination of gardiquimod and heat-killed antigen showed maximum efficacy. The results from the present study reflect the potential of tested vaccine candidate with gardiquimod as an adjuvant.
Collapse
|
4
|
Goyal DK, Keshav P, Kaur S. Adjuvant effects of TLR agonist gardiquimod admixed with Leishmania vaccine in mice model of visceral leishmaniasis. INFECTION GENETICS AND EVOLUTION 2021; 93:104947. [PMID: 34052416 DOI: 10.1016/j.meegid.2021.104947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 01/10/2023]
Abstract
Tropical and subtropical areas of the world are affected by leishmaniasis, which is caused by Leishmania spp. It has been categorized as an NTD (neglected tropical disease) because of its negligence. The sand fly of genus Phlebotomus acts as the vector for the transmission of the promastigote form of this protozoan parasite to the mammalian host where it converts to amastigote form in the macrophages. Visceral form of leishmaniasis (VL) is a deadly infection in the endothelial system of the human and other mammals. Only a few chemotherapeutic agents are available for the treatment of this infectious disease whereas no vaccine is available for the control of leishmanial infection. Therefore in the current study, we have tested the effects of gardiquimod (a TLR agonist) as an adjuvant in combination with the formalin-killed antigen of L. donovani as a vaccine. The mice were vaccinated thrice at an interval of 2 weeks and challenged with L. donovani promastigotes after 2 weeks of the last vaccination. We assessed the parasite load, delayed-type hypersensitivity (DTH) responses, humoral and cell-mediated immune response in BALB/c mice before and after challenge infection with L. donovani. Immunized mice were found to have the least parasite load, high DTH response, elevated levels of Th1 cytokines, IgG2a, and nitric oxide than non-immunized and infected control mice. The efficacy of the vaccine was boosted with the use of adjuvant gardiquimod that depicts its potential as an adjuvant in this study. Our study is reporting the adjuvant effects of gardiquimod for the first time. Further studies using other Leishmania species can be performed to signify its role.
Collapse
Affiliation(s)
- Deepak Kumar Goyal
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Poonam Keshav
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh 160014, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology (UGC-CAS), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
5
|
Pereira-Silva R, Costa-Pereira JT, Alonso R, Serrão P, Martins I, Neto FL. Attenuation of the Diffuse Noxious Inhibitory Controls in Chronic Joint Inflammatory Pain Is Accompanied by Anxiodepressive-Like Behaviors and Impairment of the Descending Noradrenergic Modulation. Int J Mol Sci 2020; 21:E2973. [PMID: 32340137 PMCID: PMC7215719 DOI: 10.3390/ijms21082973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
The noradrenergic system is paramount for controlling pain and emotions. We aimed at understanding the descending noradrenergic modulatory mechanisms in joint inflammatory pain and its correlation with the diffuse noxious inhibitory controls (DNICs) and with the onset of anxiodepressive behaviours. In the complete Freund's adjuvant rat model of Monoarthritis, nociceptive behaviors, DNICs, and anxiodepressive-like behaviors were evaluated. Spinal alpha2-adrenergic receptors (a2-AR), dopamine beta-hydroxylase (DBH), and noradrenaline were quantified concomitantly with a2-AR pharmacologic studies. The phosphorylated extracellular signal-regulated kinases 1 and 2 (pERK1/2) were quantified in the Locus coeruleus (LC), amygdala, and anterior cingulate cortex (ACC). DNIC was attenuated at 42 days of monoarthritis while present on days 7 and 28. On day 42, in contrast to day 28, noradrenaline was reduced and DBH labelling was increased. Moreover, spinal a2-AR were potentiated and no changes in a2-AR levels were observed. Additionally, at 42 days, the activation of ERKs1/2 was increased in the LC, ACC, and basolateral amygdala. This was accompanied by anxiety- and depressive-like behaviors, while at 28 days, only anxiety-like behaviors were observed. The data suggest DNIC is attenuated in prolonged chronic joint inflammatory pain, and this is accompanied by impairment of the descending noradrenergic modulation and anxiodepressive-like behaviors.
Collapse
Affiliation(s)
- Raquel Pereira-Silva
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200-393 Porto, Portugal; (R.P.-S.); (J.T.C.-P.); (R.A.); (I.M.)
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal
- Departamento de Biomedicina–Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - José Tiago Costa-Pereira
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200-393 Porto, Portugal; (R.P.-S.); (J.T.C.-P.); (R.A.); (I.M.)
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal
- Departamento de Biomedicina–Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Raquel Alonso
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200-393 Porto, Portugal; (R.P.-S.); (J.T.C.-P.); (R.A.); (I.M.)
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal
- Departamento de Biomedicina–Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paula Serrão
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- MedInUP–Center for Drug Discovery and Innovative Medicines, University of Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Isabel Martins
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200-393 Porto, Portugal; (R.P.-S.); (J.T.C.-P.); (R.A.); (I.M.)
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal
- Departamento de Biomedicina–Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fani L. Neto
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S). Rua Alfredo Allen 208, 4200-393 Porto, Portugal; (R.P.-S.); (J.T.C.-P.); (R.A.); (I.M.)
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto. Rua Alfredo Allen 208, 4200-393 Porto, Portugal
- Departamento de Biomedicina–Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto. Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
6
|
Askarizadeh A, Badiee A, Khamesipour A. Development of nano-carriers for Leishmania vaccine delivery. Expert Opin Drug Deliv 2020; 17:167-187. [PMID: 31914821 DOI: 10.1080/17425247.2020.1713746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Leishmaniasis is a neglected tropical infection caused by several species of intracellular protozoan parasites of the genus Leishmania. It is strongly believed that the development of vaccines is the most appropriate approach to control leishmaniasis. However, there is no vaccine available yet and the lack of an appropriate adjuvant delivery system is the main reason.Areas covered: Adjuvants are the utmost important part of a vaccine, to induce the immune response in the right direction. Limitations and drawbacks of conventional adjuvants have been necessitated the development of novel particulate delivery systems as adjuvants to obtain desirable protection against infectious diseases such as leishmaniasis. This review focused on particulate adjuvants especially nanoparticles that are in use to develop vaccines against leishmaniasis. The list of adjuvants includes generally lipids-, polymers-, or mineral-based delivery systems that target antigens specifically to the site of action within the host's body and enhance immune responses.Expert opinion: Over the past few years, there has been an increasing interest in developing particulate adjuvants as alternatives to immunostimulatory types. The composition of nano-carriers and particularly the physicochemical properties of nanoparticles have great potential to overcome challenges posed to leishmaniasis vaccine developments.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ratnapriya S, Keerti, Sahasrabuddhe AA, Dube A. Visceral leishmaniasis: An overview of vaccine adjuvants and their applications. Vaccine 2019; 37:3505-3519. [PMID: 31103364 DOI: 10.1016/j.vaccine.2019.04.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022]
Abstract
Although there has been an extensive research on vaccine development over the last decade and some vaccines have been commercialized for canine visceral leishmaniasis (CVL), but as yet no effective vaccine is available for anthroponotic VL which may partly be due to the absence of an appropriate adjuvant system. Vaccines alone yield poor immunity hence requiring an adjuvant which can boost the immunosuppressed state of VL infected individuals by eliciting adaptive immune responses to achieve required immunological enhancement. Recent studies have documented the continuous efforts that are being made in the field of adjuvants research in an attempt to render vaccines more effective. This review article focuses on adjuvants, particularly particulate and non-particulate ones, which have been assessed with VL vaccine candidates in several preclinical and clinical trials outlining the induction of immune responses obtained from these studies. Moreover, we have emphasized the applicability of multiple adjuvants combination for an improvement in the potential of a VL vaccine.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Keerti
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Amogh A Sahasrabuddhe
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Anuradha Dube
- Division of Parasitology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
8
|
Oliveira Silva KL, Marin Chiku V, Luvizotto Venturin G, Correa Leal AA, de Almeida BF, De Rezende Eugenio F, Dos Santos PSP, Fabrino Machado G, De Lima VMF. PD-1 and PD-L1 regulate cellular immunity in canine visceral leishmaniasis. Comp Immunol Microbiol Infect Dis 2018; 62:76-87. [PMID: 30711051 DOI: 10.1016/j.cimid.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 11/18/2022]
Abstract
PD-1 is a negative costimulator of chronic infectious diseases In this study, we investigated the expression of PD-1 and its ligands in the spleen of dogs with visceral leishmaniasis and lymphoproliferative response to soluble antigen, in lymph node cells in the presence or absence of antibodies blocking PD-1 and its ligands. Our results showed expression of PD-1 and its ligands is higher after L. infantum infection and in the spleen of infected dogs, PD-1 blockage was able to restore the antigen-dependent lymphoproliferative response and regulated production of the cytokines IL-4 and IL-10 and NO production. We concluded that L. infantum infection modulates PD-1 and its ligands expression in canine VL and that blockage of PD-1 restores the immune response. Thus, blockage of PD-1 is a target for therapeutic drug development.
Collapse
Affiliation(s)
- Kathlenn Liezbeth Oliveira Silva
- Cellular Immunology Laboratory, Department of Medicine, Surgery and Animal Reproduction, School of Veterinary Medicine of Araçatuba (FMVA), Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP), Brazil
| | - Vanessa Marin Chiku
- Cellular Immunology Laboratory, Department of Medicine, Surgery and Animal Reproduction, School of Veterinary Medicine of Araçatuba (FMVA), Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP), Brazil
| | - Gabriela Luvizotto Venturin
- Cellular Immunology Laboratory, Department of Medicine, Surgery and Animal Reproduction, School of Veterinary Medicine of Araçatuba (FMVA), Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP), Brazil
| | - Aline Aparecida Correa Leal
- Cellular Immunology Laboratory, Department of Medicine, Surgery and Animal Reproduction, School of Veterinary Medicine of Araçatuba (FMVA), Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP), Brazil
| | - Breno Fernando de Almeida
- Cellular Immunology Laboratory, Department of Medicine, Surgery and Animal Reproduction, School of Veterinary Medicine of Araçatuba (FMVA), Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP), Brazil
| | - Flavia De Rezende Eugenio
- Cellular Immunology Laboratory, Department of Medicine, Surgery and Animal Reproduction, School of Veterinary Medicine of Araçatuba (FMVA), Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP), Brazil
| | - Paulo Sergio Patto Dos Santos
- Cellular Immunology Laboratory, Department of Medicine, Surgery and Animal Reproduction, School of Veterinary Medicine of Araçatuba (FMVA), Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP), Brazil
| | - Gisele Fabrino Machado
- Cellular Immunology Laboratory, Department of Medicine, Surgery and Animal Reproduction, School of Veterinary Medicine of Araçatuba (FMVA), Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP), Brazil
| | - Valeria Marçal Felix De Lima
- Cellular Immunology Laboratory, Department of Medicine, Surgery and Animal Reproduction, School of Veterinary Medicine of Araçatuba (FMVA), Universidade Estadual Paulista "Julio de Mesquita Filho" (UNESP), Brazil.
| |
Collapse
|
9
|
Gala RP, D'Souza M, Zughaier SM. Evaluation of various adjuvant nanoparticulate formulations for meningococcal capsular polysaccharide-based vaccine. Vaccine 2016; 34:3260-7. [PMID: 27177946 DOI: 10.1016/j.vaccine.2016.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
Abstract
Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis and its capsular polysaccharides (CPS) are a major virulence factor in meningococcal infections and form the basis for serogroup designation and preventive vaccines. We have formulated a novel meningococcal nanoparticulate vaccine formulation that does not require chemical conjugation, but encapsulates meningococcal CPS polymers in a biodegradable material that slowly release antigens, thereby has antigen depot effect to enhance antigenicity. The novel vaccine formulation is inexpensive and can be stored as a dry powder with extended shelf life that does not require the cold-chain which facilitates storage and distribution. In order to enhance the antigenicity of meningococcal nanoparticulate vaccine, we screened various adjuvants formulated in nanoparticles, for their ability to potentiate antigen presentation by dendritic cells. Here, we report that MF59 and Alum are superior to TLR-based adjuvants in enhancing dendritic cell maturation and antigen presentation markers MHC I, MHC II, CD40, CD80 and CD86 in dendritic cells pulsed with meningococcal CPS nanoparticulate vaccine.
Collapse
Affiliation(s)
- Rikhav P Gala
- Vaccine Nanotechnology Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Martin D'Souza
- Vaccine Nanotechnology Laboratory, Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA.
| | - Susu M Zughaier
- Department of Microbiology and Immunology, and Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|