1
|
Dai X, Han YX, Shen QY, Tang H, Cheng LZ, Yang FP, Wei WH, Yang SM. Effect of Food Restriction on Food Grinding in Brandt's Voles. Animals (Basel) 2023; 13:3424. [PMID: 37958179 PMCID: PMC10647212 DOI: 10.3390/ani13213424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Food grinding is supposed to be influenced by multiple factors. However, how those factors affecting this behavior remain unclear. In this study, we investigated the effect of food restriction on food grinding in Brandt's voles (Lasiopodomys brandtii), as well as the potential role of the gut microbiota in this process, through a comparison of the variations between voles with different food supplies. Food restriction reduced the relative amount of ground food to a greater extent than it lowered the relative food consumption, and altered the abundance of Staphylococcus, Aerococcus, Jeotgalicoccus, and Un--s-Clostridiaceae bacterium GM1. Fecal acetate content for the 7.5 g-food supply group was lower than that for the 15 g-food supply group. Our study indicated that food restriction could effectively inhibit food grinding. Further, Un--s-Clostridiaceae bacterium GM1 abundance, Aerococcus abundance, and acetate content were strongly related to food grinding. Variations in gut microbial abundance and short-chain fatty acid content induced by food restriction likely promote the inhibition of food grinding. These results could potentially provide guidance for reducing food waste during laboratory rodent maintenance.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Yu-Xuan Han
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Qiu-Yi Shen
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Hao Tang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Li-Zhi Cheng
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Feng-Ping Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Wan-Hong Wei
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Mei Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| |
Collapse
|
2
|
Dobrut A, Młodzińska A, Drożdż K, Wójcik-Grzybek D, Michalak K, Pietras-Ożga D, Karakulska J, Biegun K, Brzychczy-Włoch M. The Two-Track Investigation of Fibronectin Binding Protein A of Staphylococcus aureus from Bovine Mastitis as a Potential Candidate for Immunodiagnosis: A Pilot Study. Int J Mol Sci 2023; 24:ijms24076569. [PMID: 37047541 PMCID: PMC10094982 DOI: 10.3390/ijms24076569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Bovine mastitis is the most common disease affecting dairy cattle worldwide and it generates substantial losses for cattle breeders. One of the most common pathogens identified in infected milk samples is Staphylococcus aureus. Currently, there is no fast test for recognizing bacteria species on the market. The aim of this study was to bioinformatically and laboratory detect and characterize the fibronectin binding protein A (FnBPA) of S. aureus (SA) in milk samples obtained from cows diagnosed with mastitis. More than 90,000,000 amino acid sequences were subjected to bioinformatic detection in the search for a potential biomarker for bovine SA. The analysis of FnBPA included the detection of signal peptides and nonclassical proteins, antigenicity, and the prediction of epitopes. To confirm the presence of the fnbA gene in four SA isolates, amplification with specific primers was performed. FnBPA was detected by immunoblotting. The immunoreactivity and selectivity were performed with monoclonal anti-FnBPA antibodies and SA-negative serum. The bioinformatic analysis showed that FnBPA is a surface, conservative, immunoreactive, and species-specific protein with antigenic potential. Its presence was confirmed in all of the SA isolates we studied. Immunoblotting proved its immunoreactivity and specificity. Thus, it can be considered a potential biomarker in mastitis immunodiagnostics.
Collapse
Affiliation(s)
- Anna Dobrut
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University—Medical College, 31-008 Kraków, Poland
| | | | - Kamil Drożdż
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University—Medical College, 31-008 Kraków, Poland
| | - Dagmara Wójcik-Grzybek
- Department of Experimental Physiology, Chair of Physiology, Jagiellonian University—Medical College, 31-008 Kraków, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Infectious Diseases Clinic, University of Life Science in Lublin, 20-033 Lublin, Poland
| | - Dorota Pietras-Ożga
- Department of Epizootiology and Infectious Diseases Clinic, University of Life Science in Lublin, 20-033 Lublin, Poland
| | - Jolanta Karakulska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland
| | - Katarzyna Biegun
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University—Medical College, 31-008 Kraków, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University—Medical College, 31-008 Kraków, Poland
| |
Collapse
|
3
|
Li JX, Cao XJ, Huang YY, Li YP, Yu ZY, Lin M, Li QY, Chen JC, Guo XG. Investigation of hub gene associated with the infection of Staphylococcus aureus via weighted gene co-expression network analysis. BMC Microbiol 2021; 21:329. [PMID: 34852788 PMCID: PMC8633612 DOI: 10.1186/s12866-021-02392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/10/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Staphylococcus aureus is a gram-positive bacterium that causes serious infection. With the increasing resistance of bacteria to current antibiotics, it is necessary to learn more about the molecular mechanism and cellular pathways involved in the Staphylococcus aureus infection. Methods We downloaded the GSE33341 dataset from the GEO database and applied the weighted gene co-expression network analysis (WGCNA), from which we obtained some critical modules. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were applied to illustrate the biological functions of genes in these modules. We constructed the protein-protein interaction (PPI) network by Cytoscape and selected five candidate hub genes. Five potential hub genes were validated in GSE30119 by GraphPad Prism 8.0. The diagnostic values of these genes were calculated and present in the ROC curve based on the GSE13670 dataset. Their gene functions were analyzed by Gene Set Enrichment Analysis (GSEA). Results A co-expression network was built with 5000 genes divided into 11 modules. The genes in green and turquoise modules demonstrated a high correlation. According to the KEGG and GO analyses, genes in the green module were closely related to ubiquitination and autophagy. Subsequently, we picked out the top five hub genes in the green module. And UBB was determined as the hub gene in the GSE30119 dataset. The expression level of UBB, ASB, and MKRN1 could significantly differentiate between Staphylococcus aureus infection and healthy controls based on the ROC curve. The GSEA analysis indicated that lower expression levels of UBB were associated with the P53 signal pathway. Conclusions We identified some hub genes and significant signal enrichment pathways in Staphylococcus aureus infection via bioinformatics analysis, which may facilitate the development of potential clinical therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02392-y.
Collapse
Affiliation(s)
- Jia-Xin Li
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xun-Jie Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan-Yi Huang
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ya-Ping Li
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Zi-Yuan Yu
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Min Lin
- Department of Traditional Chinese and Western Clinical Medicine, The Traditional Chinese and Western Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiu-Ying Li
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Chun Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
4
|
Immunoinformatics analysis and evaluation of recombinant chimeric triple antigen toxoid (r-HAB) against Staphylococcus aureus toxaemia in mouse model. Appl Microbiol Biotechnol 2021; 105:8297-8311. [PMID: 34609523 PMCID: PMC8490849 DOI: 10.1007/s00253-021-11609-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022]
Abstract
Abstract
Staphylococcus aureus is a serious pathogen unleashing its virulence through several classes of exotoxins such as hemolysins and enterotoxins. In this study, we designed a novel multi-antigen subunit vaccine which can induce innate, humoral and cellular immune responses. Alpha hemolysin, enterotoxins A and B were selected as protective antigens for combining into a triple antigen chimeric protein (HAB). Immunoinformatics analysis predicted HAB protein as a suitable vaccine candidate for inducing both humoral and cellular immune responses. Tertiary structure of the HAB protein was predicted and validated through computational approaches. Docking studies were performed between the HAB protein and mice TLR2 receptor. Furthermore, we constructed and generated recombinant HAB (r-HAB) protein in E. coli and studied its toxicity, immunogenicity and protective efficacy in a mouse model. Triple antigen chimeric protein (r-HAB) was found to be highly immunogenic in mouse as the anti-r-HAB hyperimmune serum was strongly reactive to all three native exotoxins on Western blot. In vitro toxin neutralization assay using anti-r-HAB antibodies demonstrated > 75% neutralization of toxins on RAW 264.7 cell line. Active immunization with r-HAB toxoid gave ~ 83% protection against 2 × lethal dosage of secreted exotoxins. The protection was mediated by induction of strong antibody responses that neutralized the toxins. Passive immunization with anti-r-HAB antibodies gave ~ 50% protection from lethal challenge. In conclusion, in vitro and in vivo testing of r-HAB found the molecule to be nontoxic, highly immunogenic and induced excellent protection towards native toxins in actively immunized and partial protection to passively immunized mice groups. Key points • HAB protein was computationally designed to induce humoral and cellular responses. • r-HAB protein was found to be nontoxic, immunogenic and protective in mouse model. • r-HAB conferred protection against lethal challenge in active and passive immunization.
Collapse
|
5
|
Fan X, Li N, Xu M, Yang D, Wang B. Intrapulmonary Vaccination Induces Long-lasting and Effective Pulmonary Immunity against Staphylococcus aureus Pneumonia. J Infect Dis 2021; 224:903-913. [PMID: 33417695 PMCID: PMC8408773 DOI: 10.1093/infdis/jiab012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Staphylococcus aureus causes community- and hospital-acquired pneumonia linked to a high mortality rate. The emergence and rapid transmission of multidrug-resistant S. aureus strains has become a serious health concern, highlighting the challenges associated with the development of a vaccine to combat S. aureus pneumonia. Methods This study evaluated the effects of intrapulmonary immunization on the immune response and protection against S. aureus lung infection in a respiratory mouse model using a subunit vaccine. Results Compared with the intranasal immunized mice, the intrapulmonarily immunized mice had lower levels of pulmonary bacterial colonization and lethality, accompanied by alleviated lung inflammation with reduced proinflammatory cytokines and increased levels of interleukin-10 and antimicrobial peptide following intrapulmonary challenge. Optimal protection was associated with increased pulmonary antibodies and resident memory T cells. Moreover, intrapulmonary immunization provided long-lasting pulmonary protection for at least 6 months, with persistent cellular and humoral immunity in the lungs. Conclusions Vaccine reaching the deep lung by intrapulmonary immunization plays a significant role in the induction of efficacious and long-lasting immunity against S. aureus in the lung parenchyma. Hence, intrapulmonary immunization can be a strategy for the development of a vaccine against S. aureus pneumonia. Immunization through the intrapulmonary route with a subunit of S. aureus vaccine elicited tissue resident memory T cells and antigen-specific antibodies in the lungs, and provided optimal and long-term protection against S. aureus pneumonia.
Collapse
Affiliation(s)
- Xin Fan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Meiyi Xu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Li B, Huang L, Lv P, Li X, Liu G, Chen Y, Wang Z, Qian X, Shen Y, Li Y, Fang W. The role of Th17 cells in psoriasis. Immunol Res 2020; 68:296-309. [PMID: 32827097 DOI: 10.1007/s12026-020-09149-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
T helper 17 (Th17) cells have been involved in the pathogenesis of many autoimmune and inflammatory diseases, like psoriasis, multiple sclerosis (MS), rheumatoid arthritis (RA), and inflammatory bowel disease (IBD). However, the role of Th17 cells in psoriasis has not been clarified completely. Th17-derived proinflammatory cytokines including IL-17A, IL-17F, IL-21, IL-22, and IL-26 have a critical role in the pathogenesis of these disorders. In this review, we introduced the signaling and transcriptional regulation of Th17 cells. And then, we demonstrate the immunopathology role of Th17 cells and functions of the related cytokines in the psoriasis to get a better understanding of the inflammatory mechanisms mediated by Th17 cells in this disease.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Liangliang Huang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Peng Lv
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Nanjing, Jiangsu Province, 211122, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yan Chen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Ziyu Wang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiaoxian Qian
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yixiao Shen
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
7
|
Li J, Wang H, Han Y, Zhao Y, Zhou H, Xu J, Li L. Novel peptides screened by phage display peptide library can mimic epitopes of the FnBPA-A protein and induce protective immunity against Staphylococcus aureus in mice. Microbiologyopen 2019; 8:e910. [PMID: 31452334 PMCID: PMC6813446 DOI: 10.1002/mbo3.910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/20/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022] Open
Abstract
Fibronectin‐binding protein A (FnBPA) is a key adhesin of Staphylococcus aureus, and the protein binding to fibrinogen and elastin is mediated by its N‐terminal A domain. Thus, FnBPA‐A has been considered a potential vaccine candidate, but the relevant epitopes are not fully understood. Here, purified rabbit anti‐FnBPA‐A antibodies were produced and used to screen for peptides corresponding to or mimicking the epitope of native FnBPA‐A protein by using a phage random 12‐mer peptide library. After four rounds of panning, 25 randomly selected phage clones were detected by phage‐ELISA and competition‐inhibition ELISA. Then, eight anti‐rFnBPA‐A antibody‐binding phage clones were selected for sequencing, and six different 12‐mer peptides were displayed by these phages. Although these displayed peptides shared no more than three consecutive amino acid residues identical to the sequence of FnBPA‐A, they could be recognized by the FnBPA‐A‐specific antibodies in vitro and could induce specific antibodies against FnBPA‐A in vivo, suggesting that these displayed peptides were mimotopes of FnBPA‐A. Finally, the protective efficiencies of these mimotopes were investigated by mouse vaccination and challenge experiments. Compared with that of control group mice, the relative percent survival of mice immunized with phage clones displaying a mimotope was 13.33% (C2 or C15), 0% (C8), 6.67% (C10), 26.67% (C19 or 1:2 mixture of C23 and C19), 53.33% (C23), 33.33% (1:1 mixture of C23 and C19), and 66.67% (2:1 mixture of C23 and C19). Overall, five peptides mimicking FnBPA‐A protein epitopes were obtained, and a partially protective immunity against S. aureus infection could be stimulated by these mimotope peptides in mice.
Collapse
Affiliation(s)
- Jin‐Nian Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Hong Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Yu‐Xi Han
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Yu‐Ting Zhao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Huan‐Huan Zhou
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Jun Xu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| | - Lin Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and TechnologyAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
8
|
Connolly R, Denton MD, Humphreys H, McLoughlin RM. Would hemodialysis patients benefit from a Staphylococcus aureus vaccine? Kidney Int 2019; 95:518-525. [PMID: 30691691 DOI: 10.1016/j.kint.2018.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus bloodstream infection can have potentially catastrophic consequences for patients on hemodialysis. Consequently, an effective vaccine to prevent S aureus infection would have a significant influence on morbidity and mortality in this group. To date, however, efforts to develop a vaccine have been unsuccessful. Previous antibody-inducing vaccine candidates did not prevent or attenuate S aureus infection in clinical trials. Recent advances have helped to elucidate the role of specific T-cell subsets, notably T-helper cell 1 and T-helper cell 17, in the immune response to S aureus. These cells are essential for coordinating an effective phagocytic response via cytokine production, indirectly leading to destruction of the organism. It is now widely accepted that next-generation S aureus vaccines must also induce effective T-cell-mediated immunity. However, there remains a gap in our knowledge: how will an S aureus vaccine drive these responses in those patients most at risk? Given that patients on hemodialysis are an immunocompromised population, in particular with specific T-cell defects, including defects in T-helper cell subsets, this is likely to affect their ability to respond to an S aureus vaccine. We urgently need a better understanding of T-cell-mediated immunity in this cohort if an efficacious vaccine is ever to be realized for these patients.
Collapse
Affiliation(s)
- Roisin Connolly
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland; Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Mark D Denton
- Beaumont Kidney Centre, Beaumont Hospital, Dublin, Ireland
| | - Hilary Humphreys
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.
| |
Collapse
|
9
|
Zhang R, Li S, Zhang XK, Wang Y, Yang LY, Zeng H, Yan DP, Zou QM, Zuo QF. Mechanisms of fibronectin-binding protein A (FnBPA 110-263) vaccine efficacy in Staphylococcus aureus sepsis versus skin infection. Clin Immunol 2018; 194:1-8. [PMID: 29906512 DOI: 10.1016/j.clim.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/16/2018] [Accepted: 05/30/2018] [Indexed: 01/20/2023]
Abstract
Increasing rates of life-threatening infections and decreasing susceptibility to antibiotics urge an effective vaccine targeting Staphylococcus aureus. Here we investigate the role of cellular immunity in FnBPA110-263 mediated protection in Staphylococcus aureus infection. This study revealed FnBPA110-263 broadly protected mice from seven FnBPA isotypes strains in the sepsis model. FnBPA110-263 immunized B-cell deficient mice were protected against lethal challenge, while T-cell deficient mice were not. Reconstituting mice with FnBPA110-263 specific CD4+ T-cells conferred antigen specific protection. In vitro assays indicated that isolated FnBPA110-263 specific splenocytes from immunized mice produced abundant IL-17A. IL-17A deficient mice were not protected from a lethal challenge by FnBPA110-263 vaccination. Moreover, neutralizing IL-17A, but not IFN-γ,reverses FnBPA110-263-induced protective efficacy in sepsis and skin infection model. These findings suggest that IL-17A producing Th17 cells play an essential role in FnBPA110-263 vaccine-mediated defense against S. aureus sepsis and skin infection in mice.
Collapse
Affiliation(s)
- Rui Zhang
- Clinical Laboratory, ChengDu Military General Hospital, Chengdu 610083, PR China
| | - Sun Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Xiao-Kai Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Yu Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Liu-Yang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Da-Peng Yan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China..
| | - Qian-Fei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China..
| |
Collapse
|
10
|
Yang L, Zhou H, Cheng P, Yang Y, Tong Y, Zuo Q, Feng Q, Zou Q, Zeng H. A novel bivalent fusion vaccine induces broad immunoprotection against Staphylococcus aureus infection in different murine models. Clin Immunol 2018; 188:85-93. [DOI: 10.1016/j.clim.2017.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/16/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
|