1
|
Rampersadh K, Salie MT, Engel KC, Moodley C, Zühlke LJ, Engel ME. Presence of Group A streptococcus frequently assayed virulence genes in invasive disease: a systematic review and meta-analysis. Front Cell Infect Microbiol 2024; 14:1337861. [PMID: 39055978 PMCID: PMC11270091 DOI: 10.3389/fcimb.2024.1337861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction It is currently unclear what the role of Group A streptococcus (GAS) virulence factors (VFs) is in contributing to the invasive potential of GAS. This work investigated the evidence for the association of GAS VFs with invasive disease. Methods We employed a broad search strategy for studies reporting the presence of GAS VFs in invasive and non-invasive GAS disease. Data were independently extracted by two reviewers, quality assessed, and meta-analyzed using Stata®. Results A total of 32 studies reported on 45 putative virulence factors [invasive (n = 3,236); non-invasive (n = 5,218)], characterized by polymerase chain reaction (PCR) (n = 30) and whole-genome sequencing (WGS) (n = 2). The risk of bias was rated as low and moderate, in 23 and 9 studies, respectively. Meta-,analyses of high-quality studies (n = 23) revealed a significant association of speM [OR, 1.64 (95%CI, 1.06; 2.52)] with invasive infection. Meta-analysis of WGS studies demonstrated a significant association of hasA [OR, 1.91 (95%CI, 1.36; 2.67)] and speG [OR, 2.83 (95%CI, 1.63; 4.92)] with invasive GAS (iGAS). Meta-analysis of PCR studies indicated a significant association of speA [OR, 1.59 (95%CI, 1.10; 2.30)] and speK [OR, 2.95 (95%CI, 1.81; 4.80)] with invasive infection. A significant inverse association was observed between prtf1 [OR, 0.42 (95%CI, 0.20; 0.87)] and invasive infection. Conclusion This systematic review and genomic meta-analysis provides evidence of a statistically significant association with invasive infection for the hasA gene, while smeZ, ssa, pnga3, sda1, sic, and NaDase show statistically significantly inverse associations with invasive infection. SpeA, speK, and speG are associated with GAS virulence; however, it is unclear if they are markers of invasive infection. This work could possibly aid in developing preventative strategies.
Collapse
Affiliation(s)
- Kimona Rampersadh
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - M. Taariq Salie
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Kelin C. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Clinton Moodley
- Department of Pathology, Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- The National Health Laboratory Service, Microbiology, Groote Schuur Hospital, Cape Town, South Africa
| | - Liesl J. Zühlke
- Division of Paediatric Cardiology, Department of Paediatrics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| | - Mark E. Engel
- AFROStrep Research Group, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council, Parrow Valley, Cape Town, South Africa
| |
Collapse
|
2
|
Butler TA, Story C, Green E, Williamson KM, Newton P, Jenkins F, Varadhan H, van Hal S. Insights gained from sequencing Australian non-invasive and invasive Streptococcus pyogenes isolates. Microb Genom 2024; 10:001152. [PMID: 38197886 PMCID: PMC10868607 DOI: 10.1099/mgen.0.001152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024] Open
Abstract
Epidemiological data have indicated that invasive infections caused by the Gram-positive cocci Streptococcus pyogenes (group A streptococcus, GAS) have increased in many Australian states over the past two decades. In July 2022, invasive GAS (iGAS) infections became nationally notifiable in Australia via public-health agencies. Surveillance for S. pyogenes infections has been sporadic within the state of New South Wales (NSW). This has led to a lack of genetic data on GAS strains in circulation, particularly for non-invasive infections, which are the leading cause of GAS's burden on the Australian healthcare system. To address this gap, we used whole-genome sequencing to analyse the genomes of 318 S. pyogenes isolates collected within two geographical regions of NSW. Invasive isolates were collected in 2007-2017, whilst non-invasive isolates were collected in 2019-2021. We found that at least 66 different emm-types were associated with clinical disease within NSW. There was no evidence of any Australian-specific clones in circulation. The M1UK variant of the emm1 global pandemic clone (M1global) has been detected in our isolates from 2013 onwards. We detected antimicrobial-resistance genes (mainly tetM, ermA or ermB genes) in less than 10 % of our 318 isolates, which were more commonly associated with non-invasive infections. Superantigen virulence gene carriage was reasonably proportionate between non-invasive and invasive infection isolates. Our study adds rich data on the genetic makeup of historical S. pyogenes infections within Australia. Ongoing surveillance of invasive and non-invasive GAS infections within NSW by whole-genome sequencing is warranted to inform on outbreaks, antimicrobial resistance and vaccine coverage.
Collapse
Affiliation(s)
- Trent A.J. Butler
- Microbiology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Chloe Story
- Microbiology, NSW Health Pathology, Wollongong Hospital, Wollongong, New South Wales, Australia
| | - Emily Green
- Microbiology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Kirsten M. Williamson
- Hunter New England Population Health, Hunter New England Local Health District, Newcastle, New South Wales, Australia
| | - Peter Newton
- Microbiology, NSW Health Pathology, Wollongong Hospital, Wollongong, New South Wales, Australia
| | - Frances Jenkins
- Department of Infectious Diseases and Microbiology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
| | - Hemalatha Varadhan
- Microbiology, NSW Health Pathology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Sebastiaan van Hal
- Department of Infectious Diseases and Microbiology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales 2050, Australia
- Central Clinical School, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
3
|
Bellés Bellés A, Villalón Panzano P, Miralbés Torner M, Bernet Sánchez A. Molecular characterization of four Group A Streptococcus causing invasive infection in a short time. Enferm Infecc Microbiol Clin 2021; 39:158-159. [DOI: 10.1016/j.eimc.2020.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 11/16/2022]
|
4
|
Jespersen MG, Lacey JA, Tong SYC, Davies MR. Global genomic epidemiology of Streptococcus pyogenes. INFECTION GENETICS AND EVOLUTION 2020; 86:104609. [PMID: 33147506 DOI: 10.1016/j.meegid.2020.104609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/04/2023]
Abstract
Streptococcus pyogenes is one of the Top 10 human infectious disease killers worldwide causing a range of clinical manifestations in humans. Colonizing a range of ecological niches within its sole host, the human, is key to the ability of this opportunistic pathogen to cause direct and post-infectious manifestations. The expansion of genome sequencing capabilities and data availability over the last decade has led to an improved understanding of the evolutionary dynamics of this pathogen within a global framework where epidemiological relationships and evolutionary mechanisms may not be universal. This review uses the recent publication by Davies et al., 2019 as an updated global framework to address S. pyogenes population genomics, highlighting how genomics is being used to gain new insights into evolutionary processes, transmission pathways, and vaccine design.
Collapse
Affiliation(s)
- Magnus G Jespersen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, VIC, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Complete Genome Sequences of Two Strains of Streptococcus pyogenes Belonging to an Emergent Clade of the Genotype
emm
89 in Brittany, France. Microbiol Resour Announc 2020; 9:9/11/e00129-20. [PMID: 32165385 PMCID: PMC7067953 DOI: 10.1128/mra.00129-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The frequency of infections due to Streptococcus pyogenes M/emm89 strains is increasing, presumably due to the emergence of a genetically distinct clone. We sequenced two emm89 strains isolated in Brittany, France, in 2009 and 2010 from invasive and noninvasive infections, respectively. Both strains belong to a newly emerged emm89 clade 3 clone. The frequency of infections due to Streptococcus pyogenes M/emm89 strains is increasing, presumably due to the emergence of a genetically distinct clone. We sequenced two emm89 strains isolated in Brittany, France, in 2009 and 2010 from invasive and noninvasive infections, respectively. Both strains belong to a newly emerged emm89 clade 3 clone.
Collapse
|
6
|
Konrad P, Hufnagel M, Berner R, Toepfner N. Long-term, single-center surveillance of non-invasive group A streptococcal (GAS) infections, emm types and emm clusters. Eur J Clin Microbiol Infect Dis 2019; 39:273-280. [PMID: 31758439 DOI: 10.1007/s10096-019-03719-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/20/2019] [Indexed: 10/25/2022]
Abstract
Group A streptococci (GAS) are among the most frequent pathogens in children. Many epidemiological studies focus on specific GAS infections (such as tonsillopharyngitis or invasive disease), on GAS carriers or on post-streptococcal sequelae. By comparison, reports on regional GAS characteristics, particularly circulating non-invasive GAS in Europe, are rare. In a monocentric study, all GAS isolated from pediatric patients at a tertiary care hospital over a 6-year period (2006-2012) were characterized. GAS emm types and clusters were determined. Associated patient data were analyzed. Five hundred sixty-six GAS strains were collected. GAS tonsillopharyngitis was most common (71.6%), followed by pyoderma (6.0%), otitis media (3.7%), perineal dermatitis (3.4%), and invasive infections (1.4%). Colonizing strains represented 13.6% of GAS. GAS emm12 was most prevalent among invasive and non-invasive isolates. Emm1, emm4, emm28, and emm89 were the most frequent non-invasive GAS strains. The emm E4 cluster was most common, followed by the A-C4, A-C3, and E1. Among the GAS infections, different emm types and clusters were identified, e.g., emm4 was more common among patients with scarlet fever. Three new emm subtypes were characterized: emm29.13, emm36.7, and emm75.5. This comprehensive review of a large, local GAS cohort points to the differences between and similarities among GAS genotypes and disease manifestations, while minimizing regional variations. Considerable deviation from previous epidemiological findings is described, especially regarding the frequent detection of emm1 and emm89 in non-invasive GAS infections. Periodic updates on molecular and epidemiological GAS characteristics are needed to track the multifaceted pathogenic potential of GAS.
Collapse
Affiliation(s)
- Peter Konrad
- Department of Pediatrics, Carl Gustav Carus University Hospital, Technical University Dresden, Dresden, Germany
| | - Markus Hufnagel
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Reinhard Berner
- Department of Pediatrics, Carl Gustav Carus University Hospital, Technical University Dresden, Dresden, Germany
| | - Nicole Toepfner
- Department of Pediatrics, Carl Gustav Carus University Hospital, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
7
|
O. Luiz FBD, Alves KB, Barros RR. Prevalence and long-term persistence of beta-haemolytic streptococci throat carriage among children and young adults. J Med Microbiol 2019; 68:1526-1533. [DOI: 10.1099/jmm.0.001054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Fernanda Baptista de O. Luiz
- Departamento Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rua Professor Ernani de Melo 101, Niterói, RJ, 24210-130, Brazil
| | - Karen B. Alves
- Departamento Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rua Professor Ernani de Melo 101, Niterói, RJ, 24210-130, Brazil
| | - Rosana R. Barros
- Departamento Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rua Professor Ernani de Melo 101, Niterói, RJ, 24210-130, Brazil
| |
Collapse
|
8
|
Mnif B, Sallem N, Triki Z, Hammami A. A report on the first outbreak of emm89 group A streptococcus invasive infections in a burns unit in Tunisia. J Med Microbiol 2019; 68:1540-1543. [PMID: 31483245 DOI: 10.1099/jmm.0.001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four group A streptococcus (GAS) bacteraemia occurred in a small burn unit within 2 weeks. The GAS patient isolates, characterized as emm89, shared the same PFGE pulsotype with two other strains isolated 2 months later. The outbreak investigation revealed that a nurse was the most likely source of GAS transmission, as she was confirmed to carry the same outbreak strain in her throat and had direct and regular contact with the six outbreak patients in the unit. The outbreak was controlled after the nurse had undergone eradication treatment. This report highlights the emergence of the emm89 clone and its capacity to elicit invasive GAS outbreaks.
Collapse
Affiliation(s)
- Basma Mnif
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Nesrine Sallem
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Zied Triki
- Burns unit, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Adnene Hammami
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|