1
|
de Lima LF, Ferreira AL, Awasthi S, Torres MD, Friedman HM, Cohen GH, de Araujo WR, de la Fuente-Nunez C. Rapid and accurate detection of herpes simplex virus type 2 using a low-cost electrochemical biosensor. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101513. [PMID: 38239491 PMCID: PMC10795591 DOI: 10.1016/j.xcrp.2023.101513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Herpes simplex virus type 2 (HSV-2) infection, which is almost exclusively sexually transmitted, causes genital herpes. Although this lifelong and incurable infection is extremely widespread, currently there is no readily available diagnostic device that accurately detects HSV-2 antigens to a satisfactory degree. Here, we report an ultrasensitive electrochemical device that detects HSV-2 antigens within 9 min and costs just $1 (USD) to manufacture. The electrochemical biosensor is biofunctionalized with the human cellular receptor nectin-1 and detects the glycoprotein gD2, which is present within the HSV-2 viral envelope. The performance of the device is tested in a guinea pig model that mimics human biofluids, yielding 88.9% sensitivity, 100.0% specificity, and 95.0% accuracy under these conditions, with a limit of detection of 0.019 fg mL-1 for gD2 protein and 0.057 PFU mL-1 for titered viral samples. Importantly, no cross-reactions with other viruses were detected, indicating the adequate robustness and selectivity of the sensor. Our low-cost technology could facilitate more frequent testing for HSV-2.
Collapse
Affiliation(s)
- Lucas F. de Lima
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, Sã o Paulo, Brazil
- These authors contributed equally
| | - André L. Ferreira
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, Sã o Paulo, Brazil
- These authors contributed equally
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo D.T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William R. de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, Sã o Paulo, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Lead contact
| |
Collapse
|
2
|
Dichtl K, Osterman A, Barry R, Wagener J. A novel microarray-based PCR assay for the detection of HSV-1, HSV-2, and VZV skin infections: A retrospective analysis. J Virol Methods 2023; 312:114650. [PMID: 36375536 DOI: 10.1016/j.jviromet.2022.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Prevalence of HSV-1, HSV-2, and VZV infection ranges from 20% to 90%. Viral reactivation is common and results in a significant individual and socioeconomic burden. Pathognomonic skin manifestations are not always present, impairing definitive clinical diagnosis. We evaluated the performance of a novel microarray-based multiplex PCR system (Euroarray, Euroimmun Medizinische Labordiagnostika) for the molecular detection of these pathogens. In this retrospective study, 50 consecutive specimens positive for HSV-1, HSV-2, or VZV (pre-characterized by qPCR) were analyzed. Two hundred-and-five negative test results were applied as a control group. The microarray successfully detected the respective pathogens in all samples that yielded a qPCR quantifiable amount of DNA. Two and one specimens containing VZV and HSV-1 DNA beneath the limit of quantification tested microarray negative. Microarray specificity was 100%. The microarray is a useful tool for diagnosing viral infections of skin and mucous membranes, allowing rapid differentiation between three pathogens in a single assay.
Collapse
Affiliation(s)
- Karl Dichtl
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Andreas Osterman
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany; Max von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU Munich, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Rachel Barry
- Microbiology Department, St. James's Hospital, Dublin, Ireland
| | - Johannes Wagener
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany; Microbiology Department, St. James's Hospital, Dublin, Ireland; Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St. James's Hospital Campus, Dublin, Ireland.
| |
Collapse
|
3
|
He R, Wang L, Wang F, Yang J, Yu X, Wang Y, Liu Z, Li C, Ma L. Combination of ultrashort PCR and Pyrococcus furiosus Argonaute for DNA detection. Analyst 2021; 147:35-39. [PMID: 34881761 DOI: 10.1039/d1an01521d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and user-friendly nucleic acid sensing platform with 10 aM sensitivity, named USPCRP (combines ultrashort PCR with Pyrococcus furiosus Argonaute cleavage for nuleic acids detection) is reported. The product of this ultrashort PCR could be directly used as a DNA guide to mediate PfAgo cleavage of molecular beacons.
Collapse
Affiliation(s)
- Ruyi He
- School of Life Science and Technology, Wuhan Polytechnic University, China. .,State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, People's Republic of China.
| | - Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, People's Republic of China.
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, People's Republic of China.
| | - Jun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, People's Republic of China.
| | - Xiao Yu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, People's Republic of China
| | - Yuan Wang
- Medical College of Hubei University of Arts and Sciences, Xiangyang, Hubei, People's Republic of China
| | - Zhiguo Liu
- School of Life Science and Technology, Wuhan Polytechnic University, China.
| | - Chunhua Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, People's Republic of China.
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Li Y, Wan Z, Zuo L, Li S, Liu H, Ma Y, Zhou L, Jin X, Li Y, Zhang C. A Novel 2-dimensional Multiplex qPCR Assay for Single-Tube Detection of Nine Human Herpesviruses. Virol Sin 2021; 36:746-754. [PMID: 33635517 DOI: 10.1007/s12250-021-00354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Human herpesviruses are double-stranded DNA viruses that are classified into nine species. More than 90% of adults are ever infected with one or more herpesviruses. The symptoms of infection with different herpesviruses are diverse ranging from mild or asymptomatic infections to deadly diseases such as aggressive lymphomas and sarcomas. Timely and accurate detection of herpesvirus infection is critical for clinical management and treatment. In this study, we established a single-tube nonuple qPCR assay for detection of all nine herpesviruses using a 2-D multiplex qPCR method with a house-keeping gene as the internal control. The novel assay can detect and distinguish different herpesviruses with 30 to 300 copies per 25 µL single-tube reaction, and does not cross-react with 20 other human viruses, including DNA and RNA viruses. The robustness of the novel assay was evaluated using 170 clinical samples. The novel assay showed a high consistency (100%) with the single qPCR assay for HHVs detection. The features of simple, rapid, high sensitivity, specificity, and low cost make this assay a high potential to be widely used in clinical diagnosis and patient treatment.
Collapse
Affiliation(s)
- Yingxue Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.,CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.,School of Biomedical Engineering, University of Science and Technology of China, Hefei, 260026, China
| | - Zhenzhou Wan
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, 225300, China
| | - Lulu Zuo
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai, 200335, China
| | - Honglian Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yingying Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lianqun Zhou
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.,School of Biomedical Engineering, University of Science and Technology of China, Hefei, 260026, China
| | - Xia Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yuye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
5
|
Evaluation of RealStar® Alpha Herpesvirus PCR Kit for Detection of HSV-1, HSV-2, and VZV in Clinical Specimens. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5715180. [PMID: 31687393 PMCID: PMC6803750 DOI: 10.1155/2019/5715180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/01/2019] [Indexed: 12/27/2022]
Abstract
Several commercial PCR kits are available for detection of herpes simplex virus (HSV) and varicella zoster virus (VZV), but the test performance of one CE-marked in vitro diagnostic kit—RealStar® alpha Herpesvirus PCR Kit—has not been well studied. This study evaluated the performance of RealStar® alpha Herpesvirus PCR Kit 1.0 on the LightCycler® 480 Instrument II for detection and differentiation of HSV-1, HSV-2, and VZV in human clinical specimens. We evaluated the analytical sensitivity of the RealStar® and in-house multiplex real-time PCR assays using serial dilutions of nucleic acids extracted from clinical specimens. The analytical sensitivity of the RealStar® assay was 10, 32, and 100 copies/reaction for HSV-1, HSV-2, and VZV, respectively, which was slightly higher than that of the in-house multiplex real-time PCR assay. Reproducibility of the cycle threshold (Cp) values for each viral target was satisfactory with the intra- and interassay coefficient of variation values below 5% for both assays. One-hundred and fifty-three clinical specimens and 15 proficiency testing samples were used to evaluate the diagnostic performance of RealStar® alpha Herpesvirus PCR Kit against the in-house multiplex real-time PCR assay. The RealStar® assay showed 100% sensitivity and specificity when compared to the in-house assay. Cp values of the RealStar® and in-house assays showed excellent correlation. RealStar® alpha Herpesvirus PCR is a sensitive, specific, and reliable assay for the detection of HSV-1, HSV-2, and VZV, with less extensive verification requirements compared to a laboratory developed assay.
Collapse
|