1
|
Hamam SM, Abdelzaher E, Fadel SH, Nassra RA, Sharafeldin HA. Prognostic value of microRNA-125a expression status in molecular groups of pediatric medulloblastoma. Childs Nerv Syst 2023; 39:1869-1880. [PMID: 36892621 PMCID: PMC10290605 DOI: 10.1007/s00381-023-05899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Current treatment allows decent survival rates but often with life-long morbidity. Molecular classification provides a base for novel therapeutic approaches. However, these groups are heterogeneous. MicroRNA-125a has a tumor suppressor function. It is downregulated in several tumors. The expression of microRNA-125a in MB patients remains unclear. Therefore, this study was designed to evaluate the expression of microRNA-125a in molecular groups of pediatric MB patients in Egyptian population and its clinical significance. METHODS Formalin-fixed, paraffin-embedded tissue blocks from 50 pediatric MB patients were retrospectively collected. Immunohistochemistry for β-catenin, GAB1, YAP1, and p53 was done for molecular classification. MicroRNA-125a expression analysis was done using qRT-PCR. Follow-up data were obtained from patients' records. RESULTS MicroRNA-125a expression was significantly lower in MB patients showing large cell/anaplastic (LC/A) histology and in the non-WNT/non-SHH group. Lower levels of microRNA-125a showed a tendency toward poor survival rates; however, difference was not significant. Infants and larger preoperative tumor size were significantly associated with lower survival rates. On a multivariate analysis, preoperative tumor size was an independent prognostic factor. CONCLUSION MicroRNA-125a expression was significantly lower in categories of pediatric MB patients with worse prognosis namely LC/A histology and the non-WNT/non-SHH group suggesting a pathogenetic role. MicroRNA-125a expression could represent a promising prognostic factor and a potential therapeutic target in the non-WNT/non-SHH group which represents the most common and the most heterogeneous group of pediatric MBs coupled with the highest rates of disseminated disease. Preoperative tumor size represents an independent prognostic factor.
Collapse
Affiliation(s)
- Soheir M Hamam
- Pathology department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman Abdelzaher
- Pathology department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Shady H Fadel
- Pediatric Oncology and Nuclear Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha A Nassra
- Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hend A Sharafeldin
- Pathology department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
2
|
Ntenti C, Lallas K, Papazisis G. Clinical, Histological, and Molecular Prognostic Factors in Childhood Medulloblastoma: Where Do We Stand? Diagnostics (Basel) 2023; 13:diagnostics13111915. [PMID: 37296767 DOI: 10.3390/diagnostics13111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Medulloblastomas, highly aggressive neoplasms of the central nervous system (CNS) that present significant heterogeneity in clinical presentation, disease course, and treatment outcomes, are common in childhood. Moreover, patients who survive may be diagnosed with subsequent malignancies during their life or could develop treatment-related medical conditions. Genetic and transcriptomic studies have classified MBs into four subgroups: wingless type (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4, with distinct histological and molecular profiles. However, recent molecular findings resulted in the WHO updating their guidelines and stratifying medulloblastomas into further molecular subgroups, changing the clinical stratification and treatment management. In this review, we discuss most of the histological, clinical, and molecular prognostic factors, as well the feasibility of their application, for better characterization, prognostication, and treatment of medulloblastomas.
Collapse
Affiliation(s)
- Charikleia Ntenti
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Konstantinos Lallas
- Department of Medical Oncology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Georgios Papazisis
- Clinical Research Unit, Special Unit for Biomedical Research and Education (BRESU), School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| |
Collapse
|
3
|
Gregory TA, Mastall M, Lin H, Hess KR, Yuan Y, Martin-Bejarano Garcia M, Fuller GN, Alfaro KD, Gule-Monroe MK, Huse JT, Khatua S, Rao G, Sandberg DI, Wefel JS, Yeboa DN, Paulino AC, McGovern SL, Zaky W, Mahajan A, Suki D, Weathers SP, Harrison RA, de Groot JF, Puduvalli VK, Penas-Prado M, Majd NK. Characterization of recurrence patterns and outcomes of medulloblastoma in adults: The University of Texas MD Anderson Cancer Center experience. Neurooncol Adv 2023; 5:vdad032. [PMID: 37114244 PMCID: PMC10129387 DOI: 10.1093/noajnl/vdad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Background Medulloblastoma in adults is rare and treatment decisions are largely driven from pediatric literature. We sought to characterize recurrent medulloblastoma in adults. Methods From a single-institution dataset of 200 adult patients diagnosed with medulloblastoma during 1978-2017, those with recurrence were analyzed for clinical features, treatment, and outcome. Results Of the 200 patients, 82 (41%) with median age of 29 years (18-59) had recurrence after a median follow-up time of 8.4 years (95% CI = 7.1, 10.3). Of these, 30 (37%) were standard-risk, 31 (38%) were high-risk, and 21 (26%) had unknown-risk diseases at the time of initial diagnosis. Forty-eight (58%) presented with recurrence outside the posterior fossa, of whom 35 (43%) had distant recurrence only. Median Progression-free survival (PFS) and OS from initial surgery were 33.5 and 62.4 months, respectively. Neither PFS nor OS from initial diagnosis differed between the standard-risk and high-risk groups in those who experience recurrence (P = .505 and .463, respectively). Median OS from first recurrence was 20.3 months, also with no difference between the standard-risk and high-risk groups (P = .518). Recurrences were treated with combinations of re-resection (20 patients; 25%), systemic chemotherapy (61 patients; 76%), radiation (29 patients; 36%), stem cell transplant (6 patients; 8%), and intrathecal chemotherapy (4 patients; 5%). Patients who received radiation at recurrence had better OS (32.9 months) than those who did not (19.2 months) (P = .034). Conclusions Recurrent medulloblastoma in adults has a poor prognosis irrespective of initial risk stratification. Recurrence commonly arises outside the posterior fossa years after initial diagnosis.
Collapse
Affiliation(s)
- Timothy A Gregory
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maximilian Mastall
- Department of Neurology, Clinical Neuroscience and Brain Tumor Center, University Hospital Zurich, Zurich, Switzerland
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth R Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kristin D Alfaro
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria K Gule-Monroe
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Soumen Khatua
- Department of Pediatric Neuro-Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - David I Sandberg
- Department of Pediatric Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey S Wefel
- Department of Neuropsychology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Debra N Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Arnold C Paulino
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan L McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wafik Zaky
- Department of Pediatric Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dima Suki
- Department of Pediatric Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca A Harrison
- Department of Neuro-Oncology, BC Cancer Agency Vancouver Centre, Vancouver, British Columbia, Canada
| | - John F de Groot
- Brain Tumor Center, UCSF Medical Center, San Francisco, California, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta Penas-Prado
- Marta Penas-Prado, MD, Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, 12NCI/NOB, NIGH, Bloch Bldg. 82, Room 213, 9030 Old Georgetown Rd, Bethesda, MD, 20892, USA ()
| | - Nazanin K Majd
- Corresponding Authors: Nazanin Majd, MD, PhD, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, Houston, TX, 77030, USA ()
| |
Collapse
|
4
|
Zhang Y, Yang H, Wang L, Zhou H, Zhang G, Xiao Z, Xue X. TOP2A correlates with poor prognosis and affects radioresistance of medulloblastoma. Front Oncol 2022; 12:918959. [PMID: 35912241 PMCID: PMC9337862 DOI: 10.3389/fonc.2022.918959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
Radiotherapy remains the standard treatment for medulloblastoma (MB), and the radioresistance contributes to tumor recurrence and poor clinical outcomes. Nuclear DNA topoisomerase II-alpha (TOP2A) is a key catalytic enzyme that initiates DNA replication, and studies have shown that TOP2A is closely related to the therapeutic effects of radiation. In this study, we found that TOP2A was significantly upregulated in MB, and high expression of TOP2A related to poor prognosis of MB patients. Knockdown of TOP2A inhibited MB cell proliferation, migration, and invasion, whereas overexpression of TOP2A enhanced the proliferative and invasive ability of MB cells. Moreover, si-TOP2A transfection in combination with irradiation (IR) significantly reduced the tumorigenicity of MB cells, compared with those transfected with si-TOP2A alone. Cell survival curve analysis revealed that the survival fraction of MB cells was significantly reduced upon TOP2A downregulation and that si-TOP2A-transfected cells had decreased D0, Dq, and SF2 values, indicating that TOP2A knockdown suppresses the resistance to radiotherapy in MB cells. In addition, western blot analysis demonstrated that the activity of Wnt/β-catenin signaling pathway was inhibited after TOP2A downregulation alone or in combination with IR treatment, whereas overexpression of TOP2A exhibited the opposite effects. Gene set enrichment analysis also revealed that Wnt/β-catenin signaling pathway is enriched in TOP2A high-expression phenotypes. Collectively, these data indicate that high expression of TOP2A leads to poor prognosis of MB, and downregulation of TOP2A inhibits the malignant behaviour as well as the radioresistance of MB cells. The Wnt/β-catenin signaling pathway may be involved in the molecular mechanisms of TOP2A mediated reduced tumorigenicity and radioresistance of MB cells.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liwen Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiqing Xiao
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xiaoying Xue,
| |
Collapse
|
5
|
Primary leptomeningeal medulloblastoma: a case-based review. Childs Nerv Syst 2022; 38:527-536. [PMID: 35059784 DOI: 10.1007/s00381-021-05435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant pediatric brain tumor, accounting for 40% of childhood tumors in posterior fossa. Metastatic disease, occurring in 20-30% of all medulloblastoma cases at diagnosis, is largely exclusive to the leptomeninges. On the contrary, primary leptomeningeal medulloblastoma or so-called chameleon medulloblastoma, defined by the absence of a detectable intraparenchymal lesion with a widespread diffusion along leptomeninges, is a rare entity of difficult diagnosis with only a few cases reported in literature. METHODS AND RESULTS A comprehensive literature search of three databases (PubMed, Ovid Medline, and Ovid Embase) have been conducted to identify pertinent papers focusing on the diagnostic process, management, and treatment of primary leptomeningeal medulloblastoma and its peculiar features. To our knowledge, only eight cases are described in literature, including five pediatric patients and three adults, two of which with the initial involvement of the spinal cord. In addition, we report another two pediatric cases, showing widespread primary diffusion along leptomeninges of brain and spinal cord. Finally, we analyze in-depth the peculiar morphological MRI features of this tumor. CONCLUSION The classification and treatment of medulloblastomas are likely to change in the coming years due to new insights into the molecular biology of medulloblastoma. Primary leptomeningeal medulloblastoma could represent another potential challenge for biologists to start exploring the underlying mechanisms of this different clinical and pathological entity, with different implications for diagnosis and its management.
Collapse
|
6
|
Alvarez-Arellano L, Eguía-Aguilar P, Piña-Sánchez P, González-García N, Palma-Guzman A, Perezpeña-Diazconti M, Maldonado-Bernal C. High expression of Toll-like receptor 7 is a survival factor in pediatric medulloblastoma. Childs Nerv Syst 2021; 37:3743-3752. [PMID: 34480601 DOI: 10.1007/s00381-021-05347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Medulloblastoma is an embryonal brain tumor that predominantly occurs in childhood with a wide histological and molecular variability. Our aim was to investigate the expression of Toll-like receptors (TLRs), their association with the infiltration of immune cells and with the histological subgroups, and, also, with the overall survival of patients. METHODS Fifty-six paraffin-preserved biopsies from children with medulloblastoma of the classic, desmoplastic, and anaplastic subtypes were included. Microarrays of tissues were performed, and the infiltration of T and NK cells was quantified, as well as the expression of TLR7, TLR8, and TLR9. For all statistical analyses, significance was p < 0.05. RESULTS CD4 + and CD8 + T lymphocytes and NK cells were found infiltrating the tumor. The infiltration of NK and CD4 + cells was greater in the classic and desmoplastic subtypes than in anaplastic. We found an important expression of TLRs in all medulloblastomas, but TLR7 and TLR8 were considerably higher in classic and desmoplastic subtypes than in anaplastic. Importantly, we observed that TLR7 was a prognostic factor for survival. CONCLUSIONS Medulloblastomas present cellular infiltration and a differential expression of TLRs depending on the histological subtype. TLR7 is a prognostic factor of survival that is dependent on treatment and age.
Collapse
Affiliation(s)
| | - Pilar Eguía-Aguilar
- Laboratorio de Biología Molecular, Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Patricia Piña-Sánchez
- Laboratorio de Oncología Molecular, Unidad de Investigación Médica en Enfermedades Oncológicas, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Nadia González-García
- Laboratorio de Neurociencias, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Alam Palma-Guzman
- Laboratorio Nacional de Microscopia Avanzada, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mario Perezpeña-Diazconti
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Unidad de Investigación en Inmunología y Proteómica , Hospital Infantil de México Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
7
|
Zhu C, Li K, Jiang M, Chen S. RBM5-AS1 promotes radioresistance in medulloblastoma through stabilization of SIRT6 protein. Acta Neuropathol Commun 2021; 9:123. [PMID: 34225779 PMCID: PMC8256544 DOI: 10.1186/s40478-021-01218-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to radioresistance in medulloblastoma. Thus, identification of key regulators of medulloblastoma stemness is critical for improving radiotherapy for medulloblastoma. In the present study, we profiled CSC-related long non-coding RNAs (lncRNAs) between radioresistant and parental medulloblastoma cells. The roles of the lncRNA RBM5-AS1 in the stemness and radiosensitivity of medulloblastoma cells were investigated. We found that RBM5-AS1, a novel inducer of medulloblastoma stemness, was significantly upregulated in radioresistant medulloblastoma cells compared to parental cells. Knockdown of RBM5-AS1 diminished the viability and clonogenic survival of both radioresistant and parental medulloblastoma cells after radiation. Silencing of RBM5-AS1 significantly enhanced radiation-induced apoptosis and DNA damage. In vivo studies confirmed that depletion of RBM5-AS1 inhibited tumor growth and increased radiosensitivity in a medulloblastoma xenograft model. In contrast, overexpression of RBM5-AS1 reduced radiation-induced apoptosis and DNA damage in medulloblastoma cells. Mechanistically, RBM5-AS1 interacted with and stabilized sirtuin 6 (SIRT6) protein. Silencing of SIRT6 reduced the stemness and reinforced radiation-induced DNA damage in medulloblastoma cells. Overexpression of SIRT6 rescued medulloblastoma cells from RBM5-AS1 depletion-induced radiosensitization and DNA damage. Overall, we identify RBM5-AS1 as an inducer of stemness and radioresistance in medulloblastoma. Targeting RBM5-AS1 may represent a potential strategy to overcome the resistance to radiotherapy in this malignancy.
Collapse
|