1
|
Khosravi B, Rouzrokh P, Faghani S, Moassefi M, Vahdati S, Mahmoudi E, Chalian H, Erickson BJ. Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review. Diagnostics (Basel) 2022; 12:2512. [PMID: 36292201 PMCID: PMC9600598 DOI: 10.3390/diagnostics12102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 01/17/2023] Open
Abstract
Machine-learning (ML) and deep-learning (DL) algorithms are part of a group of modeling algorithms that grasp the hidden patterns in data based on a training process, enabling them to extract complex information from the input data. In the past decade, these algorithms have been increasingly used for image processing, specifically in the medical domain. Cardiothoracic imaging is one of the early adopters of ML/DL research, and the COVID-19 pandemic resulted in more research focus on the feasibility and applications of ML/DL in cardiothoracic imaging. In this scoping review, we systematically searched available peer-reviewed medical literature on cardiothoracic imaging and quantitatively extracted key data elements in order to get a big picture of how ML/DL have been used in the rapidly evolving cardiothoracic imaging field. During this report, we provide insights on different applications of ML/DL and some nuances pertaining to this specific field of research. Finally, we provide general suggestions on how researchers can make their research more than just a proof-of-concept and move toward clinical adoption.
Collapse
Affiliation(s)
- Bardia Khosravi
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Orthopedic Surgery Artificial Intelligence Laboratory (OSAIL), Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Pouria Rouzrokh
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Orthopedic Surgery Artificial Intelligence Laboratory (OSAIL), Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Shahriar Faghani
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mana Moassefi
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sanaz Vahdati
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elham Mahmoudi
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hamid Chalian
- Department of Radiology, Cardiothoracic Imaging, University of Washington, Seattle, WA 98195, USA
| | - Bradley J. Erickson
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Padash S, Mohebbian MR, Adams SJ, Henderson RDE, Babyn P. Pediatric chest radiograph interpretation: how far has artificial intelligence come? A systematic literature review. Pediatr Radiol 2022; 52:1568-1580. [PMID: 35460035 PMCID: PMC9033522 DOI: 10.1007/s00247-022-05368-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 10/24/2022]
Abstract
Most artificial intelligence (AI) studies have focused primarily on adult imaging, with less attention to the unique aspects of pediatric imaging. The objectives of this study were to (1) identify all publicly available pediatric datasets and determine their potential utility and limitations for pediatric AI studies and (2) systematically review the literature to assess the current state of AI in pediatric chest radiograph interpretation. We searched PubMed, Web of Science and Embase to retrieve all studies from 1990 to 2021 that assessed AI for pediatric chest radiograph interpretation and abstracted the datasets used to train and test AI algorithms, approaches and performance metrics. Of 29 publicly available chest radiograph datasets, 2 datasets included solely pediatric chest radiographs, and 7 datasets included pediatric and adult patients. We identified 55 articles that implemented an AI model to interpret pediatric chest radiographs or pediatric and adult chest radiographs. Classification of chest radiographs as pneumonia was the most common application of AI, evaluated in 65% of the studies. Although many studies report high diagnostic accuracy, most algorithms were not validated on external datasets. Most AI studies for pediatric chest radiograph interpretation have focused on a limited number of diseases, and progress is hindered by a lack of large-scale pediatric chest radiograph datasets.
Collapse
Affiliation(s)
- Sirwa Padash
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada.
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Mohammad Reza Mohebbian
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scott J Adams
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada
| | - Robert D E Henderson
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada
| | - Paul Babyn
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada
| |
Collapse
|