Zhang D, He SX, Lu SY. Advances in molecular imaging for diagnosis of digestive tract cancers.
Shijie Huaren Xiaohua Zazhi 2012;
20:2771-2776. [DOI:
10.11569/wcjd.v20.i29.2771]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Digestive tract cancers are common cancer types and have high incidence and mortality. Currently available diagnostic methods have some limitations that make an early and accurate diagnosis and prompt treatment difficult. Molecular imaging, which has been formally defined as visualization, characterization and measurement at the molecular level instead of the anatomic level, significantly increases the sensitivity and specificity of cancer detection. Several modalities have been utilized for molecular imaging in digestive tract cancers, such as endoscopy, scintigraphy (PET/SPECT), magnetic resonance imaging (MRI), and ultrasound (US). Antibodies, peptides, and aptamers are classes of molecular probes that have been extensively used as affinity ligands. After being conjugated with various labels such as radioisotopes, fluorophore, supermagnetic or paramagnetic metals and microbubbles, the probes can specifically target tumor cells and stroma and are used with imaging modalities to detect cancers. Molecular imaging is a methodology for not only the early detection of cancer, but also the judgment of tumor staging and the guidance of therapy. With the development of new instrument and probes, as well as multi-modal platforms, molecular imaging has been gradually perfected and taken from bench to bedside, bringing opportunities for early, accurate and comprehensive diagnosis of digestive tract cancers.
Collapse