BMP-6 inhibits MMP-9 expression by regulating heme oxygenase-1 in MCF-7 breast cancer cells.
J Cancer Res Clin Oncol 2010;
137:985-95. [PMID:
21136273 DOI:
10.1007/s00432-010-0963-z]
[Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE
BMP-6, which belongs to the TGF-β superfamily, is a multifunctional molecule with distinct abilities in embryogenesis and organogenesis. Our recent research has implied that BMP-6 may suppress breast cancer metastasis. In the present study, we extended to elucidate the molecular mechanism by which BMP-6 exerts its anti-tumorigenic effect.
METHODS
The Boyden chamber assay was used to examine the ability of BMP-6 and HO-1 in MCF-7 malignant progress. RT-PCR, western blot, luciferase assay, and quantitative CHIP were used to determine the potential mechanism and signaling pathways by which BMP-6 and HO-1 function as anti-metastatic factors in MCF-7 cells.
RESULTS
The Boyden chamber assay showed that BMP-6 inhibited the migration and invasion of MCF-7 cells, which effect was significantly deprived by knockdown of HO-1. We further demonstrated that BMP-6 treatment resulted in an activation of HO-1 transcription through the recruitment of Smad1/5 to the Smad-responsive element on its promoter. In addition, BMP-6-induced up-regulation of HO-1 exhibited an inhibitory effect on MMP-9 secretion in a paracrine action in MCF-7 cells. Overexpression of BMP-6 and HO-1 synergistically suppressed MMP-9 transcription, which effect was specifically mediated via the MAPK/p38/AP-1 signaling. However, blockade of HO-1 using ZnPPIX totally abolished BMP-6-regulated MMP-9 activation in MCF-7 cells.
CONCLUSIONS
These observations suggest a novel role of BMP-6/HO-1 cascade to relieve breast cancer metastasis by regulating the secretion of growth factors in tumor microenvironment.
Collapse