1
|
Zhou SN, Pan WT, Pan MX, Luo QY, Zhang L, Lin JZ, Zhao YJ, Yan XL, Yuan LP, Zhang YX, Yang DJ, Qiu MZ. Comparison of Immune Microenvironment Between Colon and Liver Metastatic Tissue in Colon Cancer Patients with Liver Metastasis. Dig Dis Sci 2021; 66:474-482. [PMID: 32193860 DOI: 10.1007/s10620-020-06203-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/10/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Liver metastasis is an indicator of unfavorable responses to immunotherapy in colorectal cancer patients. However, the difference of immune microenvironment between primary tumors and liver metastases has not been well understood. PATIENTS AND METHODS Fifty-four colon cancer with liver metastasis patients who received resection of both primary and metastasis lesions have been analyzed. The immune score is based on the density of infiltrating immune cells (CD3+ cell, CD8+ cell, CD11b+ cell, CD11c+ cell, and CD33+ cell) in the center and margin of the tumor. The expression of immune markers between the primary tumor and hepatic metastases was analyzed using Wilcoxon's signed rank test. RESULTS All the five markers had higher expression in tumor margins than center tumor in both primary tumor and hepatic metastases lesions. The expression of CD11c and CD11b had no difference between metastatic lesions and primary tumor. In tumor margins, except CD11b, all the other 4 markers expressed significantly higher in hepatic metastases than in primary tumor. Intra-tumor, CD3 had higher expression in primary tumor than in hepatic metastases, while CD33 had higher expression in hepatic metastases than in primary tumor. CD8+ CD3+ cells of the total CD8+ cell population in primary tumor was significantly higher than in hepatic metastases (36.42% vs. 24.88%, p = 0.0069). CONCLUSIONS The immune microenvironment between primary tumor and hepatic metastasis is different. More immunosuppressing cells in liver may partially explain why immunotherapy in colon cancer is less effective with liver metastatic disease.
Collapse
Affiliation(s)
- Su-Na Zhou
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Wen-Tao Pan
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Meng-Xian Pan
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Qiu-Yun Luo
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Lin Zhang
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jun-Zhong Lin
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yu-Jie Zhao
- Department of Colorectal Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xiang-Lei Yan
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Lu-Ping Yuan
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yu-Xin Zhang
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Da-Jun Yang
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Miao-Zhen Qiu
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China.
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Antineoplastic effects of targeting CCR5 and its therapeutic potential for colorectal cancer liver metastasis. J Cancer Res Clin Oncol 2020; 147:73-91. [PMID: 32902795 PMCID: PMC7810651 DOI: 10.1007/s00432-020-03382-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Purpose Liver metastasis is observed in up to 50% of colorectal cancer (CRC) patients. Available treatment options are limited and disease recurrence is often. Chemokine receptor 5 (CCR5) has attracted attention as novel therapeutic target for treating cancers. In this study, we reinforced the importance of CCR5 as therapeutic target in CRC and its liver metastasis by applying in vitro, in vivo and clinical investigations. Methods By targeting CCR5 via siRNAs or an FDA approved antagonist (maraviroc), we investigated the ensuing antineoplastic effects in three CRC cell lines. An animal model for CRC liver metastasis was used to evaluate time-dependent expressional modulation of the CCR5 axis by cDNA microarray. The model was also used to evaluate the in vivo efficacy of targeting CCR5 by maraviroc. Circulatory and tumor associated levels of CCR5 and its cognate ligands (CCL3, CCL4, CCL5) were analyzed by ELISA, qRT-PCR and immunohistochemistry. Results Targeting the CCR5 inhibited proliferative, migratory and clonogenic properties and interfered with cell cycle-related signaling cascades. In vivo findings showed significant induction of the CCR5 axis during the early liver colonization phase. Treatment with maraviroc significantly inhibited CRC liver metastasis in the animal model. Differential expression profiles of circulatory and tumor associated CCR5/ligands were observed in CRC patients and healthy controls. Conclusion The findings indicate that targeting the CCR5 axis can be an effective strategy for treating CRC liver metastasis. Electronic supplementary material The online version of this article (10.1007/s00432-020-03382-9) contains supplementary material, which is available to authorized users.
Collapse
|
3
|
Xu GG, Zaidi SA, Zhang F, Singh S, Raborg TJ, Yuan Y, Zhang Y. Exploration on natural product anibamine side chain modification toward development of novel CCR5 antagonists and potential anti-prostate cancer agents. Bioorg Med Chem Lett 2015; 25:3721-5. [PMID: 26096680 DOI: 10.1016/j.bmcl.2015.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
Abstract
Prostate cancer is one of the leading causes of death among males in the world. Prostate cancer cells have been shown to express upregulated chemokine receptor CCR5, a G protein-coupled receptor (GPCR) that relates to the inflammation process. Anibamine, a natural product containing a pyridine ring and two aliphatic side chains, was shown to carry a binding affinity of 1 μM at CCR5 as an antagonist with potential anti-cancer activity. However, it is not drug-like according to the Lipinski's rule of five mainly due to its two long aliphatic side chains. In our effort to improve its drug-like property, a series of anibamine derivatives were designed and synthesized by placement of aromatic side chains through an amide linkage to the pyridine ring. The newly synthesized compounds were tested for their CCR5 affinity and antagonism, and potential anti-proliferation activity against prostate cancer cell lines. Basal cytotoxicity was finally studied for compounds showing potent anti-proliferation activity. It was found that compounds with hydrophobic substitutions on the aromatic systems seemed to carry more promising CCR5 binding and prostate cancer cell proliferation inhibition activities.
Collapse
Affiliation(s)
- Guoyan G Xu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Saheem A Zaidi
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Feng Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Shilpa Singh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Thomas J Raborg
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Yunyun Yuan
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 East Leigh Street, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
4
|
Zumwalt TJ, Goel A. Immunotherapy of Metastatic Colorectal Cancer: Prevailing Challenges and New Perspectives. CURRENT COLORECTAL CANCER REPORTS 2015; 11:125-140. [PMID: 26441489 PMCID: PMC4591512 DOI: 10.1007/s11888-015-0269-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patients with recurring or metastatic colorectal cancer (mCRC) have strikingly low long-term survival, while conventional treatments such as chemotherapeutic intervention and radiation therapy marginally improve longevity. Although, many factors involving immunosurveillance and immunosuppression were recently validated as important for patient prognosis and care, a multitude of experimental immunotherapies designed to combat unresectable mCRC have, in few cases, successfully mobilized antitumor immune cells against malignancies, nor conclusively or consistently granted protection, complete remission, and/or stable disease from immunotherapy - of which benefit less than 10% of those receiving therapy. After decades of progress, however, new insights into the mechanisms of immunosuppression, tolerance, and mutation profiling established novel therapies that circumvent these immunological barriers. This review underlines the most exciting methods to date that manipulate immune cells to curb mCRC, including adoptive cell therapy, dendritic cell vaccines, and checkpoint inhibitor antibodies - of which hint at effective and enduring protection against disease progression and undetected micrometastases.
Collapse
Affiliation(s)
- Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Pervaiz A, Ansari S, Berger MR, Adwan H. CCR5 blockage by maraviroc induces cytotoxic and apoptotic effects in colorectal cancer cells. Med Oncol 2015; 32:158. [PMID: 25840792 DOI: 10.1007/s12032-015-0607-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/26/2015] [Indexed: 12/21/2022]
Abstract
Alterations in the expression of C-C chemokine receptor type 5 (CCR5 or CD195) have been correlated with disease progression in different cancers. Recently, a few investigations have reported the blockage of this receptor by an antagonist (maraviroc) and its antineoplastic effects on tumor cell growth. However, little is known about the mechanistic reasons behind these antineoplastic effects of CCR5 blockage by maraviroc. In this study, we blocked the CCR5 receptor by maraviroc in SW480 and SW620 colorectal cancer cells to study the resulting changes in biological properties and related pathways. This blockage induced significantly reduced proliferation and a profound arrest in G1 phase of the cell cycle. Concomitantly, maraviroc caused significant signs of apoptosis at morphological level. Significant modulation of multiple apoptosis-relevant genes was also noticed at mRNA levels. In addition, we found remarkable increases in cleaved caspases at protein level. These modulations led us to propose a signaling pathway for the observed apoptotic effects. In conclusion, blocking the CCR5 by maraviroc induces significant cytotoxic and apoptotic effects in colorectal cancer cells. Thus, maraviroc can be considered a model compound, which may foster the development of further CCR5 antagonists to be used for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Asim Pervaiz
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
6
|
Mango RL, Wu QP, West M, McCook EC, Serody JS, van Deventer HW. C-C chemokine receptor 5 on pulmonary mesenchymal cells promotes experimental metastasis via the induction of erythroid differentiation regulator 1. Mol Cancer Res 2013; 12:274-82. [PMID: 24197118 DOI: 10.1158/1541-7786.mcr-13-0164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED C-C Chemokine receptor 5 knockout (Ccr5(-/-)) mice develop fewer experimental pulmonary metastases than wild-type (WT) mice. This phenomenon was explored by applying gene expression profiling to the lungs of mice with these metastases. Consequently, erythroid differentiation regulator 1 (Erdr1) was identified as upregulated in the WT mice. Though commonly associated with bone marrow stroma, Erdr1 was differentially expressed in WT pulmonary mesenchymal cells (PMC) and murine embryonic fibroblasts (MEF). Moreover, the Ccr5 ligand Ccl4 increased its expression by 3.36 ± 0.14-fold. Ccr5 signaling was dependent on the mitogen-activated protein kinase kinase (Map2k) but not the phosphoinositide 3-kinase (Pi3k) pathway because treatment with U0126 inhibited upregulation of Erdr1, but treatment with LY294002 increased the expression by 3.44 ± 0.92-fold (P < 0.05). The effect Erdr1 on B16-F10 melanoma metastasis was verified by the adoptive transfer of WT MEFs into Ccr5(-/-) mice. In this model, MEFs that had been transduced with Erdr1 short hairpin RNA (shRNA) lowered metastasis by 33% compared with control transduced MEFs. The relevance of ERDR1 on human disease was assessed by coculturing chronic lymphocytic leukemia (CLL) cells with M2-10B4 stromal cells that had been transfected with shRNA or control plasmids. After 96 hours of coculture, the cell counts were higher with control cell lines than with Erdr1 knockdown lines [odds ratio (OR), 1.88 ± 0.27, 2.52 ± 0.66, respectively]. This increase was associated with a decrease in apoptotic cells (OR, 0.69 ± 0.18, 0.58 ± 0.12, respectively). IMPLICATIONS Therefore, ERDR1 is a stromal-derived factor that promotes cancer cell survival in vitro and in an experimental metastasis model.
Collapse
Affiliation(s)
- Robert L Mango
- University of North Carolina, CB 7305, 170 Manning Drive, Chapel Hill, NC 27599-7305.
| | | | | | | | | | | |
Collapse
|