2
|
Primary ciliary dyskinesia relative protein ZMYND10 is involved in regulating ciliary function and intraflagellar transport in Paramecium tetraurelia. Eur J Protistol 2020; 77:125756. [PMID: 33279757 DOI: 10.1016/j.ejop.2020.125756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Cilia are highly conserved in most eukaryotes and are regarded as an important organelle for motility and sensation in various species. Cilia are microscopic, hair-like cytoskeletal structures that protrude from the cell surface. The major focus in studies of cilia has been concentrated on the ciliary dysfunction in vertebrates that causes multisymptomatic diseases, which together are referred to as ciliopathies. To date, the understanding of ciliopathies has largely depended on the study of ciliary structure and function in different animal models. Zinc finger MYND-type containing 10 (ZMYND10) is a ciliary protein that was recently found to be mutated in patients with primary ciliary dyskinesia (PCD). In Paramecium tetraurelia, we identified two ZMYND10 genes, arising from a whole-genome duplication. Using RNAi, we found that the depletion of ZMYND10 in P. tetraurelia causes severe ciliary defects, thus provoking swimming dysfunction and lethality. Moreover, we found that the absence of ZMYND10 caused the abnormal localization of the intraflagellar transport (IFT) protein IFT43 along cilia. These results suggest that ZMYND10 is involved in the regulation of ciliary function and IFT, which may contribute to the study of PCD pathogenesis.
Collapse
|
3
|
Wang Y, Dan L, Li Q, Li L, Zhong L, Shao B, Yu F, He S, Tian S, He J, Xiao Q, Putti TC, He X, Feng Y, Lin Y, Xiang T. ZMYND10, an epigenetically regulated tumor suppressor, exerts tumor-suppressive functions via miR145-5p/NEDD9 axis in breast cancer. Clin Epigenetics 2019; 11:184. [PMID: 31801619 PMCID: PMC6894283 DOI: 10.1186/s13148-019-0785-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background Recent studies suggested that ZMYND10 is a potential tumor suppressor gene in multiple tumor types. However, the mechanism by which ZMYND10 inhibits breast cancer remains unclear. Here, we investigated the role and mechanism of ZMYND10 in breast cancer inhibition. Results ZMYND10 was dramatically reduced in multiple breast cancer cell lines and tissues, which was associated with promoter hypermethylation. Ectopic expression of ZMYND10 in silenced breast cancer cells induced cell apoptosis while suppressed cell growth, cell migration and invasion in vitro, and xenograft tumor growth in vivo. Furthermore, molecular mechanism studies indicated that ZMYND10 enhances expression of miR145-5p, which suppresses the expression of NEDD9 protein through directly targeting the 3'-untranslated region of NEDD9 mRNA. Conclusions Results from this study show that ZMYND10 suppresses breast cancer tumorigenicity by inhibiting the miR145-5p/NEDD9 signaling pathway. This novel discovered signaling pathway may be a valid target for small molecules that might help to develop new therapies to better inhibit the breast cancer metastasis.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangying Dan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,The People's Hospital of Tongliang District, Chongqing, China
| | - Qianqian Li
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Bianfei Shao
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Yu
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Sanxiu He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaorong Tian
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Thomas C Putti
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoqian He
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yixiao Feng
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Cheng Y, Ho RLKY, Chan KC, Kan R, Tung E, Lung HL, Yau WL, Cheung AKL, Ko JMY, Zhang ZF, Luo DZ, Feng ZB, Chen S, Guan XY, Kwong D, Stanbridge EJ, Lung ML. Anti-angiogenic pathway associations of the 3p21.3 mapped BLU gene in nasopharyngeal carcinoma. Oncogene 2014; 34:4219-28. [PMID: 25347745 PMCID: PMC4761643 DOI: 10.1038/onc.2014.353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 08/01/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
Abstract
Zinc-finger, MYND-type containing 10 (ZMYND10), or more commonly called BLU, expression is frequently downregulated in nasopharyngeal carcinoma (NPC) and many other tumors due to promoter hypermethylation. Functional evidence shows that the BLU gene inhibits tumor growth in animal assays, but the detailed molecular mechanism responsible for this is still not well understood. In current studies, we find that 93.5% of early-stage primary NPC tumors show downregulated BLU expression. Using a PCR array, overexpression of the BLU gene was correlated to the angiogenesis network in NPC cells. Moreover, expression changes of the MMP family, VEGF and TSP1, were often detected in different stages of NPC, suggesting the possibility that BLU may be directly involved in the microenvironment and anti-angiogenic activity in NPC development. Compared with vector-alone control cells, BLU stable transfectants, derived from poorly-differentiated NPC HONE1 cells, suppress VEGF165, VEGF189 and TSP1 expression at both the RNA and protein levels, and significantly reduce the secreted VEGF protein in these cells, reflecting an unknown regulatory mechanism mediated by the BLU gene in NPC. Cells expressing BLU inhibited cellular invasion, migration and tube formation. These in vitro results were further confirmed by in vivo tumor suppression and a matrigel plug angiogenesis assay in nude mice. Tube-forming ability was clearly inhibited, when the BLU gene is expressed in these cells. Up to 70-90% of injected tumor cells expressing increased exogenous BLU underwent cell death in animal assays. Overexpressed BLU only inhibited VEGF165 expression in differentiated squamous NPC HK1 cells, but also showed an anti-angiogenic effect in the animal assay, revealing a complicated mechanism regulating angiogenesis and the microenvironment in different NPC cell lines. Results of these studies indicate that alteration of BLU gene expression influences anti-angiogenesis pathways and is important for the development of NPC.
Collapse
Affiliation(s)
- Y Cheng
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - R L K Y Ho
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - K C Chan
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - R Kan
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - E Tung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - H L Lung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - W L Yau
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - A K L Cheung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - J M Y Ko
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - Z F Zhang
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - D Z Luo
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - Z B Feng
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - S Chen
- Department of Pathology, Guangxi Medical University, Guangxi, People's Republic of China
| | - X Y Guan
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - D Kwong
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| | - E J Stanbridge
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - M L Lung
- Department of Clinical Oncology/Center for Nasopharyngeal Carcinoma Research, University of Hong Kong, Hong Kong, SAR, Hong Kong
| |
Collapse
|
5
|
Santini V, Melnick A, Maciejewski JP, Duprez E, Nervi C, Cocco L, Ford KG, Mufti G. Epigenetics in focus: Pathogenesis of myelodysplastic syndromes and the role of hypomethylating agents. Crit Rev Oncol Hematol 2013; 88:231-45. [DOI: 10.1016/j.critrevonc.2013.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/14/2013] [Accepted: 06/12/2013] [Indexed: 12/22/2022] Open
|