1
|
Cardoso HJ, Carvalho TMA, Fonseca LRS, Figueira MI, Vaz CV, Socorro S. Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Med Res Rev 2020; 41:1499-1538. [PMID: 33274768 DOI: 10.1002/med.21766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa), one of the most commonly diagnosed cancers worldwide, still presents important unmet clinical needs concerning treatment. In the last years, the metabolic reprogramming and the specificities of tumor cells emerged as an exciting field for cancer therapy. The unique features of PCa cells metabolism, and the activation of specific metabolic pathways, propelled the use of metabolic inhibitors for treatment. The present work revises the knowledge of PCa metabolism and the metabolic alterations that underlie the development and progression of the disease. A focus is given to the role of bioenergetic sources, namely, glucose, lipids, and glutamine sustaining PCa cell survival and growth. Moreover, it is described as the action of oncogenes/tumor suppressors and sex steroid hormones in the metabolic reprogramming of PCa. Finally, the status of PCa treatment based on the inhibition of metabolic pathways is presented. Globally, this review updates the landscape of PCa metabolism, highlighting the critical metabolic alterations that could have a clinical and therapeutic interest.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Marília I Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
2
|
Wang B, Lu D, Xuan M, Hu W. Antitumor effect of sunitinib in human prostate cancer cells functions via autophagy. Exp Ther Med 2017; 13:1285-1294. [PMID: 28413468 PMCID: PMC5377283 DOI: 10.3892/etm.2017.4134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/25/2016] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to explore sunitinib-induced autophagic effects and the specific molecular mechanisms involved, in vitro, using PC-3 and LNCaP human prostate cancer cell lines. Cells were exposed to escalating doses of sunitinib treatment and subsequent cell viability and cell cycle analyses were performed to evaluate the inhibitory effect of sunitinib in vitro. Immunofluorescence staining of microtubule associated protein 1A/1B-light chain 3 (LC3) puncta was employed to assess autophagy levels after sunitinib treatment. Western blot analysis was performed to evaluate variations in the levels of LC3, sequestosome-1, extracellular signal regulated kinase 1/2 (ERK1/2), mammalian target of rapamycin (mTOR), p70 ribosomal protein S6 kinase (p70S6K) and cleaved caspase-3 proteins. The present study revealed that sunitinib treatment inhibited cell growth and triggered autophagy in a dose-dependent manner in both cell lines. In addition, sunitinib activated ERK1/2 and inhibited mTOR/p70S6K signaling. Sunitinib-induced autophagy was notably reversed by ERK1/2 kinase inhibitor, U0126. Furthermore, inhibition of sunitinib-induced autophagy by 3-methyladenine enhanced apoptosis and exhibited improved cell viability, which indicated that sunitinib induces not only apoptosis but also autophagic cell death in prostate cancer cell lines. These results may lead to an improved understanding of the mechanism of sunitinib's cytotoxic action and may provide evidence that combined sunitinib autophagy-regulating treatment may be of benefit to anti-prostate cancer therapy.
Collapse
Affiliation(s)
- Bangqi Wang
- Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
- Department of Urology, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Dongyuan Lu
- Graduate School of The Second Military Medical University, Shanghai 200433, P.R. China
| | - Min Xuan
- Department of Plastic Surgery, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Weilie Hu
- Department of Urology, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
3
|
Du C, Li Y, Guo Y, Han M, Zhang W, Qian H. The suppression of torulene and torularhodin treatment on the growth of PC-3 xenograft prostate tumors. Biochem Biophys Res Commun 2015; 469:1146-52. [PMID: 26742427 DOI: 10.1016/j.bbrc.2015.12.112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 12/24/2015] [Indexed: 12/21/2022]
Abstract
Torulene and torularhodin are two of the principal carotenoids in Sporidiobolus pararoseus and have a similar structure to that of lycopene. The present study was to elucidate the anti-cancer activity of torulene and torularhodin in vivo with lycopene as a control. Nude mice were orally supplemented every day with a low or high dose [9 or 18 mg/kg body weight (BW)] of lycopene, torularhodin or torulene. Two weeks after the supplementation, mice were injected once with hormone-independent prostatic carcinoma PC-3 cells. When the tumor of the control group load exceeded 200 mm(3), mice were killed and the study was terminated. Compared with the controls, high-carotenoid supplementation lowered the mean number of tumors from 248.13 ± 28.74 to 50.83 ± 7.63, 70.34 ± 6.77, and 60.53 ± 6.78 mm(3) (P < 0.05, n = 8) by, respectively. Histological examination showed tumor degeneration, apoptosis and necrosis presented at the end of the experiment. Quantitative polymerase chain reaction and immunohistochemistry results showed Bcl-2 expression of the control group was higher than that of the carotenoid-treated group while the expression of Bax was lower than the carotenoid-treated group. High-carotenoid supplementation also increased the mRNA expressions of caspase-3, 8 and 9 in tumor tissues. These results show that both torulene and torularhodin supplementation inhibit the growth of prostate cancer in nude mice and suggest that such an action is associated the apoptosis of tumor cells.
Collapse
Affiliation(s)
- Chao Du
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, PR China.
| | - Yingchao Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, PR China.
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, PR China.
| | - Mei Han
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, PR China.
| | - Weiguo Zhang
- School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, PR China.
| | - He Qian
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province, PR China.
| |
Collapse
|
4
|
Kleibeuker EA, Ten Hooven MA, Castricum KC, Honeywell R, Griffioen AW, Verheul HM, Slotman BJ, Thijssen VL. Optimal treatment scheduling of ionizing radiation and sunitinib improves the antitumor activity and allows dose reduction. Cancer Med 2015; 4:1003-15. [PMID: 25828633 PMCID: PMC4529339 DOI: 10.1002/cam4.441] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 01/23/2023] Open
Abstract
The combination of radiotherapy with sunitinib is clinically hampered by rare but severe side effects and varying results with respect to clinical benefit. We studied different scheduling regimes and dose reduction in sunitinib and radiotherapy in preclinical tumor models to improve potential outcome of this combination treatment strategy. The chicken chorioallantoic membrane (CAM) was used as an angiogenesis in vivo model and as a xenograft model with human tumor cells (HT29 colorectal adenocarcinoma, OE19 esophageal adenocarcinoma). Treatment consisted of ionizing radiation (IR) and sunitinib as single therapy or in combination, using different dose-scheduling regimes. Sunitinib potentiated the inhibitory effect of IR (4 Gy) on angiogenesis. In addition, IR (4 Gy) and sunitinib (4 days of 32.5 mg/kg per day) inhibited tumor growth. Ionizing radiation induced tumor cell apoptosis and reduced proliferation, whereas sunitinib decreased tumor angiogenesis and reduced tumor cell proliferation. When IR was applied before sunitinib, this almost completely inhibited tumor growth, whereas concurrent IR was less effective and IR after sunitinib had no additional effect on tumor growth. Moreover, optimal scheduling allowed a 50% dose reduction in sunitinib while maintaining comparable antitumor effects. This study shows that the therapeutic efficacy of combination therapy improves when proper dose-scheduling is applied. More importantly, optimal treatment regimes permit dose reductions in the angiogenesis inhibitor, which will likely reduce the side effects of combination therapy in the clinical setting. Our study provides important leads to optimize combination treatment in the clinical setting.
Collapse
Affiliation(s)
- Esther A Kleibeuker
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Matthijs A Ten Hooven
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Kitty C Castricum
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Richard Honeywell
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Victor L Thijssen
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Iglesias-Gato D, Chuan YC, Jiang N, Svensson C, Bao J, Paul I, Egevad L, Kessler BM, Wikström P, Niu Y, Flores-Morales A. OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo. Mol Cancer 2015; 14:8. [PMID: 25623341 PMCID: PMC4320819 DOI: 10.1186/s12943-014-0280-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 12/22/2014] [Indexed: 02/05/2023] Open
Abstract
Background Ubiquitination is a highly dynamic and reversible process with a central role in cell homeostasis. Deregulation of several deubiquitinating enzymes has been linked to tumor development but their specific role in prostate cancer progression remains unexplored. Methods RNAi screening was used to investigate the role of the ovarian tumor proteases (OTU) family of deubiquitinating enzymes on the proliferation and invasion capacity of prostate cancer cells. RhoA activity was measured in relation with OTUB1 effects on prostate cancer cell invasion. Tumor xenograft mouse model with stable OTUB1 knockdown was used to investigate OTUB1 influence in tumor growth. Results Our RNAi screening identified OTUB1 as an important regulator of prostate cancer cell invasion through the modulation of RhoA activation. The effect of OTUB1 on RhoA activation is important for androgen-induced repression of p53 expression in prostate cancer cells. In localized prostate cancer tumors OTUB1 was found overexpressed as compared to normal prostatic epithelial cells. Prostate cancer xenografts expressing reduced levels of OTUB1 exhibit reduced tumor growth and reduced metastatic dissemination in vivo. Conclusions OTUB1 mediates prostate cancer cell invasion through RhoA activation and promotes tumorigenesis in vivo. Our results suggest that drugs targeting the catalytic activity of OTUB1 could potentially be used as therapeutics for metastatic prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-014-0280-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Iglesias-Gato
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Yin-Choy Chuan
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Ning Jiang
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China.
| | - Charlotte Svensson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Jing Bao
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China.
| | - Indranil Paul
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Lars Egevad
- Section of Urology, Department of Surgical Science Karolinska Institutet, 17176, Stockholm, Sweden.
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7BN, Oxford, UK.
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden.
| | - Yuanjie Niu
- Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China.
| | - Amilcar Flores-Morales
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|