1
|
Santillán-Guaján SM, Shahi MH, Castresana JS. Mesenchymal-Stem-Cell-Based Therapy against Gliomas. Cells 2024; 13:617. [PMID: 38607056 PMCID: PMC11011546 DOI: 10.3390/cells13070617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma is the most aggressive, malignant, and lethal brain tumor of the central nervous system. Its poor prognosis lies in its inefficient response to currently available treatments that consist of surgical resection, radiotherapy, and chemotherapy. Recently, the use of mesenchymal stem cells (MSCs) as a possible kind of cell therapy against glioblastoma is gaining great interest due to their immunomodulatory properties, tumor tropism, and differentiation into other cell types. However, MSCs seem to present both antitumor and pro-tumor properties depending on the tissue from which they come. In this work, the possibility of using MSCs to deliver therapeutic genes, oncolytic viruses, and miRNA is presented, as well as strategies that can improve their therapeutic efficacy against glioblastoma, such as CAR-T cells, nanoparticles, and exosomes.
Collapse
Affiliation(s)
- Sisa M. Santillán-Guaján
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain;
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, India;
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain;
| |
Collapse
|
2
|
Wu Y, Peng Z, Wang H, Xiang W. Identifying the Hub Genes of Glioma Peritumoral Brain Edema Using Bioinformatical Methods. Brain Sci 2022; 12:brainsci12060805. [PMID: 35741689 PMCID: PMC9221376 DOI: 10.3390/brainsci12060805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma peritumoral brain edema (GPTBE) is a frequent complication in patients with glioma. The severity of peritumoral edema endangers patients’ life and prognosis. However, there are still questions concerning the process of GPTBE formation and evolution. In this study, the patients were split into two groups based on edema scoring findings in the cancer imaging archive (TCIA) comprising 186 TCGA-LGG patients. Using mRNA sequencing data, differential gene (DEG) expression analysis was performed, comparing the two groups to find the key genes affecting GPTBE. A functional enrichment analysis of differentially expressed genes was performed. Then, a protein–protein interaction (PPI) network was established, and important genes were screened. Gene set variation analysis (GSVA) scores were calculated for major gene sets and comparatively correlated with immune cell infiltration. Overall survival (OS) was analyzed using the Kaplan–Meier curve. A total of 59 DEGs were found, with 10 of them appearing as important genes. DEGs were shown to be closely linked to inflammatory reactions. According to the network score, IL10 was in the middle of the network. The presence of the IL10 protein in glioma tissues was verified using the human protein atlas (HPA). Furthermore, the gene sets’ GSVA scores were favorably linked with immune infiltration, particularly, with macrophages. The high-edema group had higher GSVA scores than the low-edema group. Finally, Kaplan–Meier analysis revealed no differences in OS between the two groups, and eight genes were found to be related to prognosis, whereas two genes were not. GPTBE is linked to the expression of inflammatory genes.
Collapse
|
3
|
Rimal R, Desai P, Marquez AB, Sieg K, Marquardt Y, Singh S. 3-D vascularized breast cancer model to study the role of osteoblast in formation of a pre-metastatic niche. Sci Rep 2021; 11:21966. [PMID: 34754042 PMCID: PMC8578551 DOI: 10.1038/s41598-021-01513-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer cells (BCCs) preferentially metastasize to bone. It is known that BCCs remotely primes the distant bone site prior to metastasis. However, the reciprocal influence of bone cells on the primary tumor is relatively overlooked. Here, to study the bone-tumor paracrine influence, a tri-cellular 3-D vascularized breast cancer tissue (VBCTs) model is engineered which comprised MDA-MB231, a triple-negative breast cancer cells (TNBC), fibroblasts, and endothelial cells. This is indirectly co-cultured with osteoblasts (OBs), thereby constituting a complex quad-cellular tumor progression model. VBCTs alone and in conjunction with OBs led to abnormal vasculature and reduced vessel density but enhanced VEGF production. A total of 1476 significantly upregulated and 775 downregulated genes are identified in the VBCTs exposed to OBs. HSP90N, CYCS, RPS27A, and EGFR are recognized as upregulated hub-genes. Kaplan Meier plot shows HSP90N to have a significant outcome in TNBC patient survivability. Furthermore, compared to cancer tissues without vessels, gene analysis recognized 1278 significantly upregulated and 566 downregulated genes in VBCTs. DKK1, CXCL13, C3 protein and BMP4 are identified to be downregulated hub genes in VBCTs. Together, a multi-cellular breast cancer model and culture protocols are established to study pre-metastatic events in the presence of OBs.
Collapse
Affiliation(s)
- Rahul Rimal
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Andrea Bonnin Marquez
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Karina Sieg
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, University Hospital, RWTH Aachen University, 52074, Aachen, Germany
| | - Smriti Singh
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany.
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Xue BZ, Xiang W, Zhang Q, Wang HF, Zhou YJ, Tian H, Abdelmaksou A, Xue J, Sun MX, Yi DY, Xiong NX, Jiang XB, Zhao HY, Fu P. CD90 low glioma-associated mesenchymal stromal/stem cells promote temozolomide resistance by activating FOXS1-mediated epithelial-mesenchymal transition in glioma cells. Stem Cell Res Ther 2021; 12:394. [PMID: 34256854 PMCID: PMC8278613 DOI: 10.1186/s13287-021-02458-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background The tumour microenvironment contributes to chemotherapy resistance in gliomas, and glioma-associated mesenchymal stromal/stem cells (gaMSCs) are important stromal cell components that play multiple roles in tumour progression. However, whether gaMSCs affect chemotherapy resistance to the first-line agent temozolomide (TMZ) remains unclear. Herein, we explored the effect and mechanism of gaMSCs on resistance to TMZ in glioma cells. Methods Human glioma cells (cell line U87MG and primary glioblastoma cell line GBM-1) were cultured in conditioned media of gaMSCs and further treated with TMZ. The proliferation, apoptosis and migration of glioma cells were detected by Cell Counting Kit-8 (CCK-8), flow cytometry and wound-healing assays. The expression of FOXS1 in glioma cells was analysed by gene microarray, PCR and Western blotting. Then, FOXS1 expression in glioma cells was up- and downregulated by lentivirus transfection, and markers of the epithelial-mesenchymal transformation (EMT) process were detected. Tumour-bearing nude mice were established with different glioma cells and treated with TMZ to measure tumour size, survival time and Ki-67 expression. Finally, the expression of IL-6 in gaMSC subpopulations and its effects on FOXS1 expression in glioma cells were also investigated. Results Conditioned media of gaMSCs promoted the proliferation, migration and chemotherapy resistance of glioma cells. The increased expression of FOXS1 and activation of the EMT process in glioma cells under gaMSC-conditioned media were detected. The relationship of FOXS1, EMT and chemotherapy resistance in glioma cells was demonstrated through the regulation of FOXS1 expression in vitro and in vivo. Moreover, FOXS1 expression in glioma cells was increased by secretion of IL-6 mainly from the CD90low gaMSC subpopulation. Conclusions CD90low gaMSCs could increase FOXS1 expression in glioma cells by IL-6 secretion, thereby activating epithelial-mesenchymal transition and resistance to TMZ in glioma cells. These results indicate a new role of gaMSCs in chemotherapy resistance and provide novel therapeutic targets. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02458-8.
Collapse
Affiliation(s)
- Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100050, China
| | - Hao-Fei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Jie Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Han Tian
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ahmed Abdelmaksou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Neurosurgery, Faculty of Medicine, Helwan University, Cairo, 11435, Egypt
| | - Jian Xue
- Henan Vocational University of Science and Technology, Zhoukou, 466000, China
| | - Min-Xuan Sun
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nan-Xiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Hypoxia Transcriptomic Modifications Induced by Proton Irradiation in U87 Glioblastoma Multiforme Cell Line. J Pers Med 2021; 11:jpm11040308. [PMID: 33923454 PMCID: PMC8073933 DOI: 10.3390/jpm11040308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
In Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.2% oxygen) GBM cell line that is radioresistant after proton therapy (PT). For cultivating cells in acute hypoxia, GSI’s hypoxic chambers were used. Cells were irradiated in the middle of a spread-out Bragg peak with increasing PT doses to verify the greater radioresistance in hypoxic conditions. Whole-genome cDNA microarray gene expression analyses were performed for samples treated with 2 and 10 Gy to highlight biological processes activated in GBM following PT in the hypoxic condition. We describe cell survival response and significant deregulated pathways responsible for the cell death/survival balance and gene signatures linked to the PT/hypoxia configurations assayed. Highlighting the molecular pathways involved in GBM resistance following hypoxia and ionizing radiation (IR), this work could suggest new molecular targets, allowing the development of targeted drugs to be suggested in association with PT.
Collapse
|
6
|
Xu Y, Guo J, Liu J, Xie Y, Li X, Jiang H, Wang J, Peng Z, Wang J, Wang S, Wan C, Chen L, Zhong Y, Liu B, Liu Z. Hypoxia-induced CREB cooperates MMSET to modify chromatin and promote DKK1 expression in multiple myeloma. Oncogene 2021; 40:1231-1241. [PMID: 33420361 PMCID: PMC7892339 DOI: 10.1038/s41388-020-01590-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Abstract
Myeloma cells produce excessive levels of dickkopf-1 (DKK1), which mediates the inhibition of Wnt signaling in osteoblasts, leading to multiple myeloma (MM) bone disease. Nevertheless, the precise mechanisms underlying DKK1 overexpression in myeloma remain incompletely understood. Herein, we provide evidence that hypoxia promotes DKK1 expression in myeloma cells. Under hypoxic conditions, p38 kinase phosphorylated cAMP-responsive element-binding protein (CREB) and drove its nuclear import to activate DKK1 transcription. In addition, high levels of DKK1 were associated with the presence of focal bone lesions in patients with t(4;14) MM, overexpressing the histone methyltransferase MMSET, which was identified as a downstream target gene of hypoxia-inducible factor (HIF)-1α. Furthermore, we found that CREB could recruit MMSET, leading to the stabilization of HIF-1α protein and the increased dimethylation of histone H3 at lysine 36 on the DKK1 promoter. Knockdown of CREB in myeloma cells alleviated the suppression of osteoblastogenesis by myeloma-secreted DKK1 in vitro. Combined treatment with a CREB inhibitor and the hypoxia-activated prodrug TH-302 (evofosfamide) significantly reduced MM-induced bone destruction in vivo. Taken together, our findings reveal that hypoxia and a cytogenetic abnormality regulate DKK1 expression in myeloma cells, and provide an additional rationale for the development of therapeutic strategies that interrupt DKK1 to cure MM.
Collapse
Affiliation(s)
- Yinyin Xu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jing Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ying Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Xin Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Hongmei Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jingjing Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ziyi Peng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jingya Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Sheng Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Chao Wan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lanting Chen
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yuping Zhong
- Department of Hematology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Beizhong Liu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China. .,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Zhiqiang Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China. .,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
7
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM. Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol 2020; 83:100-120. [PMID: 33370605 DOI: 10.1016/j.semcancer.2020.12.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain cancer and one of the most aggressive cancers found in humans. Most of the signs and symptoms of GBM can be mild and slowly aggravated, although other symptoms might demonstrate it as an acute ailment. However, the precise mechanisms of the development of GBM remain unknown. Due to the improvement of molecular pathology, current researches have reported that glioma progression is strongly connected with different types of epigenetic phenomena, such as histone modifications, DNA methylation, chromatin remodeling, and aberrant microRNA. Furthermore, the genes and the proteins that control these alterations have become novel targets for treating glioma because of the reversibility of epigenetic modifications. In some cases, gene mutations including P16, TP53, and EGFR, have been observed in GBM. In contrast, monosomies, including removals of chromosome 10, particularly q23 and q25-26, are considered the standard markers for determining the development and aggressiveness of GBM. Recently, amid the epigenetic therapies, histone deacetylase inhibitors (HDACIs) and DNA methyltransferase inhibitors have been used for treating tumors, either single or combined. Specifically, HDACIs are served as a good choice and deliver a novel pathway to treat GBM. In this review, we focus on the epigenetics of GBM and the consequence of its mutations. We also highlight various treatment approaches, namely gene editing, epigenetic drugs, and microRNAs to combat GBM.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687, Reims Cedex 2, France
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
Ruiz-Garcia H, Alvarado-Estrada K, Krishnan S, Quinones-Hinojosa A, Trifiletti DM. Nanoparticles for Stem Cell Therapy Bioengineering in Glioma. Front Bioeng Biotechnol 2020; 8:558375. [PMID: 33365304 PMCID: PMC7750507 DOI: 10.3389/fbioe.2020.558375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Gliomas are a dismal disease associated with poor survival and high morbidity. Current standard treatments have reached a therapeutic plateau even after combining maximal safe resection, radiation, and chemotherapy. In this setting, stem cells (SCs) have risen as a promising therapeutic armamentarium, given their intrinsic tumor homing as well as their natural or bioengineered antitumor properties. The interplay between stem cells and other therapeutic approaches such as nanoparticles holds the potential to synergize the advantages from the combined therapeutic strategies. Nanoparticles represent a broad spectrum of synthetic and natural biomaterials that have been proven effective in expanding diagnostic and therapeutic efforts, either used alone or in combination with immune, genetic, or cellular therapies. Stem cells have been bioengineered using these biomaterials to enhance their natural properties as well as to act as their vehicle when anticancer nanoparticles need to be delivered into the tumor microenvironment in a very precise manner. Here, we describe the recent developments of this new paradigm in the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
9
|
Ruiz-Garcia H, Alvarado-Estrada K, Schiapparelli P, Quinones-Hinojosa A, Trifiletti DM. Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Front Cell Neurosci 2020; 14:558381. [PMID: 33177991 PMCID: PMC7596188 DOI: 10.3389/fncel.2020.558381] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and devastating primary brain tumor, leading to a uniform fatality after diagnosis. A major difficulty in eradicating GBM is the presence of microscopic residual infiltrating disease remaining after multimodality treatment. Glioma cancer stem cells (CSCs) have been pinpointed as the treatment-resistant tumor component that seeds ultimate tumor progression. Despite the key role of CSCs, the ideal preclinical model to study the genetic and epigenetic landmarks driving their malignant behavior while simulating an accurate interaction with the tumor microenvironment (TME) is still missing. The introduction of three-dimensional (3D) tumor platforms, such as organoids and 3D bioprinting, has allowed for a better representation of the pathophysiologic interactions between glioma CSCs and the TME. Thus, these technologies have enabled a more detailed study of glioma biology, tumor angiogenesis, treatment resistance, and even performing high-throughput screening assays of drug susceptibility. First, we will review the foundation of glioma biology and biomechanics of the TME, and then the most up-to-date insights about the applicability of these new tools in malignant glioma research.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
10
|
Janjić K, Samiei M, Moritz A, Agis H. The Influence of Pro-Inflammatory Factors on Sclerostin and Dickkopf-1 Production in Human Dental Pulp Cells Under Hypoxic Conditions. Front Bioeng Biotechnol 2019; 7:430. [PMID: 31921831 PMCID: PMC6927906 DOI: 10.3389/fbioe.2019.00430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/02/2019] [Indexed: 12/27/2022] Open
Abstract
Sclerostin (Sost) and dickkopf (Dkk)-1 are inhibitors of the Wnt signaling pathway that plays a role in regenerative processes. Hypoxia-based strategies are used for regenerative approaches, but the influence of hypoxia on Sost and Dkk-1 production in a pro-inflammatory environment is unclear. The aim of this study was to assess if pro-inflammatory molecules have an influence on Sost and Dkk-1 production in dental pulp cells (DPC) under normoxia and hypoxia. Human DPC were treated with interleukin (IL)-1β, tumor necrosis factor (TNF)α or transforming growth factor (TGF)β, with L-mimosine (L-MIM) or hypoxia or a combination. Sost and Dkk-1 mRNA and protein levels were measured with qPCR and western blot, respectively. TNFα, TGFβ, L-MIM, or combined treatment did not modulate Sost and Dkk-1. IL-1β downregulated Sost at the mRNA level. Hypoxia alone and together with inflammatory markers downregulated Dkk-1 at the mRNA level. Sost and Dkk-1 protein production was below the detection limit. In conclusion, there is a differential effect of hypoxia and IL-1β on the mRNA production of Sost and Dkk-1. Pro-inflammatory molecules do not further modulate the effects of L-MIM or hypoxia on Sost and Dkk-1 production in DPC.
Collapse
Affiliation(s)
- Klara Janjić
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mohammad Samiei
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
11
|
Deng T, Gong YZ, Wang XK, Liao XW, Huang KT, Zhu GZ, Chen HN, Guo FZ, Mo LG, Li LQ. Use of Genome-Scale Integrated Analysis to Identify Key Genes and Potential Molecular Mechanisms in Recurrence of Lower-Grade Brain Glioma. Med Sci Monit 2019; 25:3716-3727. [PMID: 31104065 PMCID: PMC6537664 DOI: 10.12659/msm.913602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to identify gene signals for lower-grade glioma (LGG) and to assess their potential as recurrence biomarkers. MATERIAL AND METHODS An LGG-related mRNA sequencing dataset was downloaded from The Cancer Genome Atlas (TCGA) Informix. Multiple bioinformatics analysis methods were used to identify key genes and potential molecular mechanisms in recurrence of LGG. RESULTS A total of 326 differentially-expressed genes (DEGs), were identified from 511 primary LGG tumor and 18 recurrent samples. Gene ontology (GO) analysis revealed that the DEGs were implicated in cell differentiation, neuron differentiation, negative regulation of neuron differentiation, and cell proliferation in the forebrain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database suggests that DEGs are associated with proteoglycans in cancer, the Wnt signaling pathway, ECM-receptor interaction, the PI3K-Akt signaling pathway, transcriptional deregulation in cancer, and the Hippo signaling pathway. The hub DEGs in the protein-protein interaction network are apolipoprotein A2 (APOA2), collagen type III alpha 1 chain (COL3A1), collagen type I alpha 1 chain (COL1A1), tyrosinase (TYR), collagen type I alpha 2 chain (COL1A2), neurotensin (NTS), collagen type V alpha 1 chain (COL5A1), poly(A) polymerase beta (PAPOLB), insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), and anomalous homeobox (ANHX). GSEA revealed that the following biological processes may associated with LGG recurrence: cell cycle, DNA replication and repair, regulation of apoptosis, neuronal differentiation, and Wnt signaling pathway. CONCLUSIONS Our study demonstrated that hub DEGs may assist in the molecular understanding of LGG recurrence. These findings still need further molecular studies to identify the assignment of DEGs in LGG.
Collapse
Affiliation(s)
- Teng Deng
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Yi-Zhen Gong
- Department of Evidence-Based Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Ke-Tuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Hai-Nan Chen
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Fang-Zhou Guo
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Li-Gen Mo
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| |
Collapse
|
12
|
Transcriptome profiling reveals PDZ binding kinase as a novel biomarker in peritumoral brain zone of glioblastoma. J Neurooncol 2018; 141:315-325. [PMID: 30460633 DOI: 10.1007/s11060-018-03051-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Peritumoural brain zone (PT) of glioblastoma (GBM) is the area where tumour recurrence is often observed. We aimed to identify differentially regulated genes between tumour core (TC) and PT to understand the underlying molecular characteristics of infiltrating tumour cells in PT. METHODS 17 each histologically characterised TC and PT tissues of GBM along with eight control tissues were subjected to cDNA Microarray. PT tissues contained 25-30% infiltrating tumour cells. Data was analysed using R Bioconductor software. Shortlisted genes were validated using qRT-PCR. Expression of one selected candidate gene, PDZ Binding Kinase (PBK) was correlated with patient survival, tumour recurrence and functionally characterized in vitro using gene knock-down approach. RESULTS Unsupervised hierarchical clustering showed that TC and PT have distinct gene expression profiles compared to controls. Further, comparing TC with PT, we observed a significant overlap in gene expression profile in both, despite PT having fewer infiltrating tumour cells. qRT-PCR for 13 selected genes validated the microarray data. Expression of PBK was higher in PT as compared to TC and recurrent when compared to newly diagnosed GBM tumours. PBK knock-down showed a significant reduction in cell proliferation, migration and invasion with increase in sensitivity to radiation and Temozolomide treatment. CONCLUSIONS We show that several genes of TC are expressed even in PT contributing to the vulnerability of PT for tumour recurrence. PBK is identified as a novel gene up-regulated in PT of GBM with a strong role in conferring aggressiveness, including radio-chemoresistance, thus contributing to recurrence in GBM tumours.
Collapse
|
13
|
Zhang Q, Yi DY, Xue BZ, Wen WW, Lu YP, Abdelmaksou A, Sun MX, Yuan DT, Zhao HY, Xiong NX, Xiang W, Fu P. CD90 determined two subpopulations of glioma-associated mesenchymal stem cells with different roles in tumour progression. Cell Death Dis 2018; 9:1101. [PMID: 30368520 PMCID: PMC6204133 DOI: 10.1038/s41419-018-1140-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 02/03/2023]
Abstract
Human glioma-associated mesenchymal stem cells (gbMSCs) are the stromal cell components that contribute to the tumourigenesis of malignant gliomas. Recent studies have shown that gbMSCs consist of two distinct subpopulations (CD90+ and CD90− gbMSCs). However, the different roles in glioma progression have not been expounded. In this study, we found that the different roles of gbMSCs in glioma progression were associated with CD90 expression. CD90high gbMSCs significantly drove glioma progression mainly by increasing proliferation, migration and adhesion, where as CD90low gbMSCs contributed to glioma progression chiefly through the transition to pericytes and stimulation of vascular formation via vascular endothelial cells. Furthermore, discrepancies in long non-coding RNAs and mRNAs expression were verified in these two gbMSC subpopulations, and the potential underlying molecular mechanism was discussed. Our data confirm for the first time that CD90high and CD90low gbMSCs play different roles in human glioma progression. These results provide new insights into the possible future use of strategies targeting gbMSC subpopulations in glioma patients.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dong-Ye Yi
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bing-Zhou Xue
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Wan Wen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yin-Ping Lu
- Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ahmed Abdelmaksou
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Neurosurgery, Faculty of Medicine, Helwan University, Cairo, 11435, Egypt
| | - Min-Xuan Sun
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - De-Tian Yuan
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Hong-Yang Zhao
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nan-Xiang Xiong
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Xiang
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Peng Fu
- Department of Neurosurgery,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Zhang Q, Xiang W, Yi DY, Xue BZ, Wen WW, Abdelmaksoud A, Xiong NX, Jiang XB, Zhao HY, Fu P. Current status and potential challenges of mesenchymal stem cell-based therapy for malignant gliomas. Stem Cell Res Ther 2018; 9:228. [PMID: 30143053 PMCID: PMC6109313 DOI: 10.1186/s13287-018-0977-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Glioma, which accounts for more than 30% of primary central nervous system tumours, is characterised by symptoms such as headaches, epilepsy, and blurred vision. Glioblastoma multiforme is the most aggressive, malignant, and lethal brain tumour in adults. Even with progressive combination treatment with surgery, radiotherapy, and chemotherapy, the prognosis for glioma patients is still extremely poor. Compared with the poor outcome and slowly developing technologies for surgery and radiotherapy, the application of targeted chemotherapy with a new mechanism has become a research focus in this field. Moreover, targeted therapy is promising for most solid tumours. The tumour-tropic ability of stem cells, including neural stem cells and mesenchymal stem cells, provides an alternative therapeutic approach. Thus, mesenchymal stem cell-based therapy is based on a tumour-selective capacity and has been thought to be an effective anti-tumour option over the past decades. An increasing number of basic studies on mesenchymal stem cell-based therapy for gliomas has yielded complex outcomes. In this review, we summarise the biological characteristics of human mesenchymal stem cells, and the current status and potential challenges of mesenchymal stem cell-based therapy in patients with malignant gliomas.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Wan-Wan Wen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, No. 2, Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Ahmed Abdelmaksoud
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Nan-Xiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Ave. Jiefang No.1277, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
15
|
Janjić K, Cvikl B, Kurzmann C, Moritz A, Agis H. Do hypoxia and L-mimosine modulate sclerostin and dickkopf-1 production in human dental pulp-derived cells? Insights from monolayer, spheroid and tooth slice cultures. BMC Oral Health 2018. [PMID: 29523112 PMCID: PMC5845180 DOI: 10.1186/s12903-018-0492-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background To understand the responses of the dental pulp to hypoxia is of high relevance for regenerative endodontics and dental traumatology. Here, we aimed to reveal the effects of hypoxia and the hypoxia mimetic agent L-mimosine (L-MIM) on the production of sclerostin (SOST) and dickkopf-1 (DKK-1) in human dental pulp-derived cells (DPC). Methods DPC in monolayer, spheroid and tooth slice cultures were treated with L-MIM or hypoxia. Resazurin-based toxicity and MTT assays were performed to determine cell viability. mRNA and protein levels of SOST and DKK-1 were measured with quantitative reverse transcription PCR and ELISA, respectively. To validate the hypoxia-like response, SDF-1, VEGF and IL-8 were assessed. In addition Western blots for HIF-1α, HIF-2α and HIF-3α were done. Results Cells were vital upon treatment procedures and showed increased levels of HIF-1α, and HIF-2α. In monolayer cultures, mRNA levels of SOST and DKK-1 were downregulated by L-MIM and hypoxia, respectively. A significant downregulation of SOST by hypoxia was found at the protein level compared to untreated cells while the effect on DKK-1 and the impact of L-MIM on SOST and DKK-1 did not reach the level of significance at the protein level. In spheroid cultures, mRNA levels of SOST and DKK-1 were downregulated by L-MIM. A significant downregulation of DKK-1 upon hypoxia treatment was found at the protein level while the impact of hypoxia on SOST and the effect of L-MIM on SOST and DKK-1 did not reach the level of significance. SOST and DKK-1 were also produced in tooth slices, but no pronounced modulation by L-MIM or hypoxia was found. Evaluation of SDF-1, VEGF and IL-8 showed a hypoxia-like response in the culture models. Conclusions There is no pronounced influence of hypoxia and L-MIM on DPC viability, SOST and DKK-1 protein production. However, the specific response depends on the culture model and the level of evaluation (mRNA or protein). These results deepen our understanding about the role of hypoxia and the potential impacts of hypoxia-based strategies on dental pulp.
Collapse
Affiliation(s)
- Klara Janjić
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, Vienna, 1200, Austria
| | - Barbara Cvikl
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, Vienna, 1200, Austria.,Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, Bern, 3010, Switzerland
| | - Christoph Kurzmann
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, Vienna, 1200, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, Vienna, 1200, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Donaueschingenstr. 13, Vienna, 1200, Austria.
| |
Collapse
|
16
|
Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F, Ciccarelli R. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel) 2018; 9:genes9020105. [PMID: 29462960 PMCID: PMC5852601 DOI: 10.3390/genes9020105] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely “cancer stem cells”, are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| |
Collapse
|
17
|
谢 思, 陈 子, 王 海, 何 敏, 陆 云, 雷 炳, 李 和, 刘 亚, 漆 松. [MACF1 knockdown in glioblastoma multiforme cells increases temozolomide-induced cytotoxicity]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1183-1189. [PMID: 28951359 PMCID: PMC6765478 DOI: 10.3969/j.issn.1673-4254.2017.09.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the role of microtubule-actin crosslinking factor 1 (MACF1) in the response of glioma cells to temozolomide (TMZ). METHODS TMZ was applied to a human gliomablastoma cell line (U87) and changes in the protein expression and cellular localization were determined with Western blot, RT-PCR, and immunofluorescence. The responses of the cells with MACF1 expression knockdown by RNA interference to TMZ were assessed. TMZ-induced effects on MACF1 expression were also assessed by immunohistochemistry in a nude mouse model bearing human glioblastoma xenografts. RESULTS TMZ resulted in significantly increased MACF1 expression (by about 2 folds) and changes in its localization in the gliomablastoma cells both in vitro and in vivo (P<0.01). Knockdown of MACF1 reduced the proliferation (by 45%) of human glioma cell lines treated with TMZ (P<0.01). TMZ-induced changes in MACF1 expression was accompanied by cytoskeletal rearrangement. CONCLUSION MACF1 may be a potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- 思迪 谢
- 南方医科大学南方医院 神经外科,广东 广州 510515Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 子阳 陈
- 南方医科大学南方医院 神经外科,广东 广州 510515Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- 广州医科大学第六医院神经外科,广东 广州 511500Department of Neurosurgery, Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511500, China
| | - 海 王
- 南方医科大学南方医院 神经外科,广东 广州 510515Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 敏毅 何
- 南方医科大学南方医院 临床医学教育中心,广东 广州 510515Nanfang Glioma Center, Center for Clinical Medical Education, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 云涛 陆
- 南方医科大学南方医院 神经外科,广东 广州 510515Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 炳喜 雷
- 中山大学孙逸仙纪念医院神经外科,广东 广州 510000Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - 和珍 李
- 南方医科大学第五附属医院神经外科,广东 广州 510900Department of Neurosurgery, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - 亚伟 刘
- 南方医科大学南方医院 神经外科,广东 广州 510515Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 松涛 漆
- 南方医科大学南方医院 神经外科,广东 广州 510515Department of Neurosurgery, Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|