1
|
Tran AT, Tran CV, Le HV, Tran LV, Tran TTP, Tran SV. Design, Synthesis, and Cytotoxic Activity of New Tubulysin Analogues. Synlett 2021. [DOI: 10.1055/s-0041-1737139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractSynthesis of tubulysin analogues, containing an N-methyl substituent on tubuvaline-amide together with the replacement of either the hydrophobic N-terminal N-methyl pipecolic acid (Mep) or at both N- and C- terminal peptides with available heteroaromatic acids and an unsaturated tubuphenylalanine moiety, respectively, were described. The in vitro cytotoxic activity by SRB assay on five cancer cell lines for sixteen tubulysins was evaluated. Among them, five analogues exhibited strong cytotoxic activities against five human cancer cell lines, including human breast carcinoma (MCF7), human colorectal adenocarcinoma (HT-29), HL-60, SW-480, human lung adenocarcinoma (A459). Interestingly, one analogue showed the strongest cytotoxicity on all five tested cell lines even much higher toxicity than the reference compound ellipticine.
Collapse
Affiliation(s)
- Anh Tuan Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology
| | - Chien Van Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| | - Hai Van Le
- Institute of Chemistry, Vietnam Academy of Science and Technology
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| | - Loc Van Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| | - Thao Thi Phuong Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology
| | - Sung Van Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology
| |
Collapse
|
2
|
Hernandez‐Gerez E, Dall’Angelo S, Collinson JM, Fleming IN, Parson SH. Widespread tissue hypoxia dysregulates cell and metabolic pathways in SMA. Ann Clin Transl Neurol 2020; 7:1580-1593. [PMID: 32790171 PMCID: PMC7480929 DOI: 10.1002/acn3.51134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The purpose of the study was to determine the extent and role of systemic hypoxia in the pathogenesis of spinal muscular atrophy (SMA). METHODS Hypoxia was assayed in vivo in early-symptomatic (postnatal day 5) SMA-model mice by pimonidazole and [18 F]-Fluoroazomycin arabinoside injections, which accumulate in hypoxic cells, followed by immunohistochemistry and tracer biodistribution evaluation. Glucose uptake in hypoxic cells was assayed by [18 F]-Fluorodeoxyglucose labeling. In vitro knockdown of Survival Motor Neuron (SMN) was performed on motor neurons and lactate metabolism measured biochemically, whereas cell cycle progression and cell death were assayed by flow cytometry. RESULTS All assays found significant levels of hypoxia in multiple organ systems in early symptomatic SMA mouse pups, except aerated tissues such as skin and lungs. This was accompanied by significantly increased glucose uptake in many affected organs, consistent with a metabolic hypoxia response. SMN protein levels were shown to vary widely between motor neuron precursors in vitro, and those with lower levels were most susceptible to cell death. In addition, SMA-model motor neurons were particularly sensitive to hypoxia, with reduced ability to transport lactate out of the cell in hypoxic culture, and a failure in normal cell cycle progression. INTERPRETATION Not only is there widespread tissue hypoxia and multi-organ cellular hypoxic response in SMA model mice, but SMA-model motor neurons are especially susceptible to that hypoxia. The data support the hypothesis that vascular defects leading to hypoxia are a significant contributor to disease progression in SMA, and offer a route for combinatorial, non-SMN related therapy.
Collapse
Affiliation(s)
- Elena Hernandez‐Gerez
- Institute of Medical SciencesSchool of MedicineMedical Sciences and NutritionUniversity of AberdeenForesterhill, AberdeenAB25 2ZDUK
- Euan Macdonald Centre for Motor Neurone Disease ResearchUniversity of EdinburghChancellor's BuildingEdinburghEH16 4SBUK
| | - Sergio Dall’Angelo
- Institute of Medical SciencesSchool of MedicineMedical Sciences and NutritionUniversity of AberdeenForesterhill, AberdeenAB25 2ZDUK
- John Mallard Scottish PET CentreUniversity of AberdeenForesterhillAB25 2ZDUK
| | - Jon M. Collinson
- Institute of Medical SciencesSchool of MedicineMedical Sciences and NutritionUniversity of AberdeenForesterhill, AberdeenAB25 2ZDUK
| | - Ian N. Fleming
- Institute of Medical SciencesSchool of MedicineMedical Sciences and NutritionUniversity of AberdeenForesterhill, AberdeenAB25 2ZDUK
| | - Simon H. Parson
- Institute of Medical SciencesSchool of MedicineMedical Sciences and NutritionUniversity of AberdeenForesterhill, AberdeenAB25 2ZDUK
- Euan Macdonald Centre for Motor Neurone Disease ResearchUniversity of EdinburghChancellor's BuildingEdinburghEH16 4SBUK
| |
Collapse
|
3
|
Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020; 57:678-696. [PMID: 32705178 PMCID: PMC7384845 DOI: 10.3892/ijo.2020.5099] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/26/2020] [Indexed: 01/10/2023] Open
Abstract
Cancer is currently ineffectively treated using therapeutic drugs, and is also able to resist drug action, resulting in increased side effects following drug treatment. A novel therapeutic strategy against cancer cells is the use of anticancer peptides (ACPs). The physicochemical properties, amino acid composition and the addition of chemical groups on the ACP sequence influences their conformation, net charge and orientation of the secondary structure, leading to an effect on targeting specificity and ACP-cell interaction, as well as peptide penetrating capability, stability and efficacy. ACPs have been developed from both naturally occurring and modified peptides by substituting neutral or anionic amino acid residues with cationic amino acid residues, or by adding a chemical group. The modified peptides lead to an increase in the effectiveness of cancer therapy. Due to this effectiveness, ACPs have recently been improved to form drugs and vaccines, which have sequentially been evaluated in various phases of clinical trials. The development of the ACPs remains focused on generating newly modified ACPs for clinical application in order to decrease the incidence of new cancer cases and decrease the mortality rate. The present review could further facilitate the design of ACPs and increase efficacious ACP therapy in the near future.
Collapse
Affiliation(s)
- Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Methyl 5-[(1H-indol-3-yl)selanyl]-1H-benzoimidazol-2-ylcarbamate (M-24), a novel tubulin inhibitor, causes G2/M arrest and cell apoptosis by disrupting tubulin polymerization in human cervical and breast cancer cells. Toxicol In Vitro 2017; 42:139-149. [DOI: 10.1016/j.tiv.2017.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/02/2016] [Accepted: 04/12/2017] [Indexed: 11/20/2022]
|
5
|
Lazzari P, Spiga M, Sani M, Zanda M, Fleming IN. KEMTUB012-NI2, a novel potent tubulysin analog that selectively targets hypoxic cancer cells and is potentiated by cytochrome p450 reductase downregulation. HYPOXIA 2017; 5:45-59. [PMID: 28580362 PMCID: PMC5448701 DOI: 10.2147/hp.s132832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE There is an urgent need to develop effective therapies and treatment strategies to treat hypoxic tumors, which have a very poor prognosis and do not respond well to existing therapies. METHODS A novel hypoxia-targeting agent, KEMTUB012-NI2, was synthesized by conjugating a 2-nitroimidazole hypoxia-targeting moiety to a synthetic tubulysin, a very potent antimitotic. Its hypoxic selectivity and mode of action were studied in breast cancer cell lines. RESULTS KEMTUB012-NI2 exhibited a similar selectivity for hypoxic cells to that of tirapazamine, a well-established hypoxia-targeting agent, but was >1,000 times more potent in cell cytotoxicity assays. The hypoxia-targeting mechanism for both KEMTUB012-NI2 and tirapazamine was selective and mediated by one-electron reductases. However, while cytochrome p450 reductase (POR) downregulation could inhibit tirapazamine cytotoxicity, it actually sensitized hypoxic cells to KEMTUB012-NI2. CONCLUSION KEMTUB012-NI2 is a potent new agent that can selectively target hypoxic cancer cells. The hypoxia selectivity of KEMTUB012-NI2 and tirapazamine appears to be differentially activated by reductases. Since reductases are heterogeneously expressed in tumors, the different activation mechanisms will allow these agents to complement each other. Combining POR downregulation with KEMTUB012-NI2 treatment could be a new treatment strategy that maximizes efficacy toward hypoxic tumor cells while limiting systemic toxicity.
Collapse
Affiliation(s)
- Paolo Lazzari
- KemoTech s.r.l., Parco Scientifico della Sardegna, Pula, Cagliari
| | - Marco Spiga
- KemoTech s.r.l., Parco Scientifico della Sardegna, Pula, Cagliari
| | - Monica Sani
- KemoTech s.r.l., Parco Scientifico della Sardegna, Pula, Cagliari.,C.N.R. - Istituto di Chimica del Riconoscimento Molecolare, Sezione 'A. Quilico', Milano, Italy
| | - Matteo Zanda
- C.N.R. - Istituto di Chimica del Riconoscimento Molecolare, Sezione 'A. Quilico', Milano, Italy.,Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, University of Aberdeen
| | - Ian N Fleming
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, Foresterhill, Aberdeen, Scotland, UK
| |
Collapse
|
6
|
Sani M, Lazzari P, Folini M, Spiga M, Zuco V, De Cesare M, Manca I, Dall'Angelo S, Frigerio M, Usai I, Testa A, Zaffaroni N, Zanda M. Synthesis and Superpotent Anticancer Activity of Tubulysins Carrying Non-hydrolysable N-Substituents on Tubuvaline. Chemistry 2017; 23:5842-5850. [PMID: 28300330 DOI: 10.1002/chem.201700874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/22/2022]
Abstract
Synthetic tubulysins 24 a-m, containing non-hydrolysable N-substituents on tubuvaline (Tuv), were obtained in high purity and good overall yields using a multistep synthesis. A key step was the formation of differently N-substituted Ile-Tuv fragments 10 by using an aza-Michael reaction of azido-Ile derivatives 8 with the α,β-unsaturated oxo-thiazole 5. A structure-activity relationship study using a panel of human tumour cell lines showed strong anti-proliferative activity for all compounds 24 a-m, with IC50 values in the sub-nanomolar range, which were distinctly lower than those of tubulysin A, vinorelbine and paclitaxel. Furthermore, 24 a-m were able to overcome cross-resistance to paclitaxel and vinorelbine in two tumour cell lines with acquired resistance to doxorubicin. Compounds 24 e and 24 g were selected as leads to evaluate their mechanism of action. In vitro assays showed that both 24 e and 24 g interfere with tubulin polymerization in a vinca alkaloid-like manner and prevent paclitaxel-induced assembly of tubulin polymers. Both compounds exerted antimitotic activity and induced apoptosis in cancer cells at very low concentrations. Compound 24 e also exhibited potent antitumor activity at well tolerated doses on in vivo models of diffuse malignant peritoneal mesothelioma, such as MESOII peritoneal mesothelioma xenografts, the growth of which was not significantly affected by vinorelbine. These results indicate that synthetic tubulysins 24 could be used as standalone chemotherapeutic agents in difficult-to-treat cancers.
Collapse
Affiliation(s)
- Monica Sani
- KemoTech Srl, Edificio 3, Località Piscinamanna, 09010, Pula (CA, Italy.,C.N.R., Istituto di Chimica del Riconoscimento Molecolare, Via Mancinelli 7, 20131, Milano (MI), Italy
| | - Paolo Lazzari
- KemoTech Srl, Edificio 3, Località Piscinamanna, 09010, Pula (CA, Italy
| | - Marco Folini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Farmacologia Molecolare, Via Amadeo 42, 20133, Milano (MI), Italy
| | - Marco Spiga
- KemoTech Srl, Edificio 3, Località Piscinamanna, 09010, Pula (CA, Italy
| | - Valentina Zuco
- Fondazione IRCCS Istituto Nazionale dei Tumori, Farmacologia Molecolare, Via Amadeo 42, 20133, Milano (MI), Italy
| | - Michelandrea De Cesare
- Fondazione IRCCS Istituto Nazionale dei Tumori, Farmacologia Molecolare, Via Amadeo 42, 20133, Milano (MI), Italy
| | - Ilaria Manca
- C.N.R. Istituto di Farmacologia Traslazionale, UOS di Cagliari, Edificio 5, Località Piscinamanna, 09010, Pula (CA), Italy
| | - Sergio Dall'Angelo
- Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | - Massimo Frigerio
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Via Mancinelli 7, 20131, Milano (MI, Italy
| | - Igor Usai
- KemoTech Srl, Edificio 3, Località Piscinamanna, 09010, Pula (CA, Italy
| | - Andrea Testa
- Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK
| | - Nadia Zaffaroni
- Fondazione IRCCS Istituto Nazionale dei Tumori, Farmacologia Molecolare, Via Amadeo 42, 20133, Milano (MI), Italy
| | - Matteo Zanda
- Kosterlitz Centre for Therapeutics, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland, UK.,C.N.R., Istituto di Chimica del Riconoscimento Molecolare, Via Mancinelli 7, 20131, Milano (MI), Italy
| |
Collapse
|
7
|
Colombo R, Wang Z, Han J, Balachandran R, Daghestani HN, Camarco DP, Vogt A, Day BW, Mendel D, Wipf P. Total Synthesis and Biological Evaluation of Tubulysin Analogues. J Org Chem 2016; 81:10302-10320. [DOI: 10.1021/acs.joc.6b01314] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Raffaele Colombo
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Lilly Research
Laboratories, A Division of Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Zhiyong Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Junyan Han
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | | - David Mendel
- Lilly Research
Laboratories, A Division of Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Peter Wipf
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
van Vuuren RJ, Visagie MH, Theron AE, Joubert AM. Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharmacol 2015; 76:1101-12. [PMID: 26563258 PMCID: PMC4648954 DOI: 10.1007/s00280-015-2903-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2015] [Indexed: 01/05/2023]
Abstract
Cancer is a complex disease since it is adaptive in such a way that it can promote proliferation and invasion by means of an overactive cell cycle and in turn cellular division which is targeted by antimitotic drugs that are highly validated chemotherapy agents. However, antimitotic drug cytotoxicity to non-tumorigenic cells and multiple cancer resistance developed in response to drugs such as taxanes and vinca alkaloids are obstacles faced in both the clinical and basic research field to date. In this review, the classes of antimitotic compounds, their mechanisms of action and cancer cell resistance to chemotherapy and other limitations of current antimitotic compounds are highlighted, as well as the potential of novel 17-β estradiol analogs as cancer treatment.
Collapse
Affiliation(s)
| | - Michelle H Visagie
- Department of Physiology, University of Pretoria, Private Bag x 323, Arcadia, 0007, South Africa.
| | - Anne E Theron
- Department of Physiology, University of Pretoria, Private Bag x 323, Arcadia, 0007, South Africa
| | - Annie M Joubert
- Department of Physiology, University of Pretoria, Private Bag x 323, Arcadia, 0007, South Africa
| |
Collapse
|