1
|
Premachandran S, Shreshtha I, Venkatakrishnan K, Das S, Tan B. Detection of brain metastases from blood using Brain nanoMET sensor: Extracellular vesicles as a dynamic marker for metastatic brain tumors. Biosens Bioelectron 2025; 269:116968. [PMID: 39586755 DOI: 10.1016/j.bios.2024.116968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Brain metastases account for a significant number of cancer-related deaths with poor prognosis and limited treatment options. Current diagnostic methods have limitations in resolution, sensitivity, inability to differentiate between primary and metastatic brain tumors, and invasiveness. Liquid biopsy is a promising non-invasive alternative; however, current approaches have shown limited efficacy for diagnosing brain metastases due to biomarker instability and low levels of detectable tumor-specific biomarkers. This study introduces an innovative liquid biopsy technique using extracellular vesicles (EVs) as a biomarker for brain metastases, employing the Brain nanoMET sensor. The sensor was fabricated through an ultrashort femtosecond laser ablation process and provides excellent surface-enhanced Raman Scattering functionality. We developed an in vitro model of metastatic tumors to understand the tumor microenvironment and secretomes influencing brain metastases from breast and lung cancers. Molecular profiling of EVs derived from brain-seeking metastatic tumors revealed unique, brain-specific signatures, which were also validated in the peripheral circulation of brain metastasis patients. Compared to primary brain tumor EVs, we also observed an upregulation of PD-L1 marker in the metastatic EVs. A machine learning model trained on these EV molecular profiles achieved 97% sensitivity in differentiating metastatic brain cancer from primary brain cancer, with 94% accuracy in predicting the primary tissue of origin for breast metastasis and 100% accuracy for lung metastasis. The results from this pilot validation suggest that this technique holds significant potential for improving metastasis diagnosis and targeted treatment strategies for brain metastases, addressing a critical unmet need in neuro-oncology.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Ishita Shreshtha
- Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Sunit Das
- St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada; Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario, M5T 1P5, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), Partnership Between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada; Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada; Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, ON, M5B 2K3, Canada.
| |
Collapse
|
2
|
Sekar S, Srikanth S, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Vellingiri B, Renu K, Madhyastha H. Biogenesis and functional implications of extracellular vesicles in cancer metastasis. Clin Transl Oncol 2024:10.1007/s12094-024-03815-8. [PMID: 39704958 DOI: 10.1007/s12094-024-03815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Extracellular vesicles (EVs) play a crucial role in the complex process of cancer metastasis by facilitating cellular communication and influencing the microenvironment to promote the spread and establishment of cancer cells in distant locations. This paper explores the process of EV biogenesis, explaining their various sources that range from endosomal compartments to plasma membrane shedding. It also discusses the complex mechanisms that control the sorting of cargo within EVs, determining their chemical makeup. We investigate the several functions of EVs in promoting the spread of cancer to other parts of the body. These functions include influencing the immune system, creating environments that support the formation of metastases before they occur, and aiding in the transformation of cells from an epithelial to a mesenchymal state. Moreover, we explore the practical consequences of EV cargo, such as nucleic acids, proteins, and lipids, in influencing the spread of cancer cells, from the beginning of invasion to the creation of secondary tumor sites. Examining recent progress in the field of EV-based diagnostics and treatments, we explore the potential of EVs as highly promising biomarkers for predicting the course of cancer and as targets for therapeutic intervention. This review aims to provide a complete understanding of the biology of EVs in the context of cancer metastasis. By unravelling the nuances of EV biology, it seeks to pave the way for new tactics in cancer detection, treatment, and management.
Collapse
Affiliation(s)
- Sneha Sekar
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sandhya Srikanth
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, 151401, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|
3
|
Tinland J, Gauld C, Sujobert P, Giroux É. Diagnostic staging and stratification in psychiatry and oncology: clarifying their conceptual, epistemological and ethical implications. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2024; 27:333-347. [PMID: 38760623 DOI: 10.1007/s11019-024-10207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Staging and stratification are two diagnostic approaches that have introduced a more dynamic outlook on the development of diseases, thus participating in blurring the line between the normal and the pathological. First, diagnostic staging, aiming to capture how diseases evolve in time and/or space through identifiable and gradually more severe stages, may be said to lean on an underlying assumption of "temporal determinism". Stratification, on the other hand, allows for the identification of various prognostic or predictive subgroups based on specific markers, relying on a more "mechanistic" or "statistical" form of determinism. There are two medical fields in which these developments have played a significant role and have given rise to sometimes profound nosological transformations: oncology and psychiatry. Drawing on examples from these two fields, this paper aims to provide much needed conceptual clarifications on both staging and stratification in order to outline how several epistemological and ethical issues may, in turn, arise. We argue that diagnostic staging ought to be detached from the assumption of temporal determinism, though it should still play an essential role in adapting interventions to stage. In doing so, it would help counterbalance stratification's own epistemological and ethical shortcomings. In this sense, the reflections and propositions developed in psychiatry can offer invaluable insights regarding how adopting a more transdiagnostic and cross-cutting perspective on temporality and disease dynamics may help combine both staging and stratification in clinical practice.
Collapse
Affiliation(s)
- Julia Tinland
- Aix Marseille Univ, Inserm, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM ; Chaire Démocratie en santé et engagement des personnes concernées par le cancer, Marseille, France.
| | - Christophe Gauld
- Service de Psychopathologie de l'Enfant et de l'Adolescent, Hospices Civils de Lyon, Lyon, F-69000, France
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS & Université Claude Bernard Lyon 1, Lyon, F-69000, France
| | - Pierre Sujobert
- Équipe Lymphoma Immunobiology, Centre international de recherche en infectiologie, université Lyon 1, Faculté de médecine et de maïeutique Lyon Sud, Lyon, France
- Service d'hématologie Biologique, Hospices civils de Lyon, hôpital Lyon Sud, Lyon, France
| | - Élodie Giroux
- Professeure des Universités en philosophie des sciences à l'université Jean Moulin Lyon 3, Institut de recherches philosophiques de Lyon (IRPHIL), Lyon, France
| |
Collapse
|
4
|
Liao CY, Li G, Kang FP, Lin CF, Xie CK, Wu YD, Hu JF, Lin HY, Zhu SC, Huang XX, Lai JL, Chen LQ, Huang Y, Li QW, Huang L, Wang ZW, Tian YF, Chen S. Necroptosis enhances 'don't eat me' signal and induces macrophage extracellular traps to promote pancreatic cancer liver metastasis. Nat Commun 2024; 15:6043. [PMID: 39025845 PMCID: PMC11258255 DOI: 10.1038/s41467-024-50450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.
Collapse
Affiliation(s)
- Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 350001, Fuzhou, China
| | - Feng-Ping Kang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
| | - Cai-Feng Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Cheng-Ke Xie
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Yong-Ding Wu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Hong-Yi Lin
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Shun-Cang Zhu
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
| | - Xiao-Xiao Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Jian-Lin Lai
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | | | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Qiao-Wei Li
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China
- Fuzhou University, 350001, Fuzhou, China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, 350001, Fuzhou, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, 350001, Fuzhou, China.
- Fuzhou University, 350001, Fuzhou, China.
- Fujian Provincial Center for Geriatrics, 350001, Fuzhou, China.
- Fujian Key Laboratory of Geriatrics, 350001, Fuzhou, China.
| |
Collapse
|
5
|
Gül D, Schweitzer A, Khamis A, Knauer SK, Ding GB, Freudelsperger L, Karampinis I, Strieth S, Hagemann J, Stauber RH. Impact of Secretion-Active Osteoblast-Specific Factor 2 in Promoting Progression and Metastasis of Head and Neck Cancer. Cancers (Basel) 2022; 14:2337. [PMID: 35565465 PMCID: PMC9106029 DOI: 10.3390/cancers14092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment success of head and neck cancer (HNC) is still hampered by tumor relapse due to metastases. Our study aimed to identify biomarkers by exploiting transcriptomics profiles of patient-matched metastases, primary tumors, and normal tissue mucosa as well as the TCGA HNC cohort data sets. Analyses identified osteoblast-specific factor 2 (OSF-2) as significantly overexpressed in lymph node metastases and primary tumors compared to normal tissue. High OSF-2 levels correlate with metastatic disease and reduced overall survival of predominantly HPV-negative HNC patients. No significant correlation was observed with tumor localization or therapy response. These findings were supported by the fact that OSF-2 expression was not elevated in cisplatin-resistant HNC cell lines. OSF-2 was strongly expressed in tumor-associated fibroblasts, suggesting a tumor microenvironment-promoting function. Molecular cloning and expression studies of OSF-2 variants from patients identified an evolutionary conserved bona fide protein secretion signal (1MIPFLPMFSLLLLLIVNPINA21). OSF-2 enhanced cell migration and cellular survival under stress conditions, which could be mimicked by the extracellular administration of recombinant protein. Here, OSF-2 executes its functions via ß1 integrin, resulting in the phosphorylation of PI3K and activation of the Akt/PKB signaling pathway. Collectively, we suggest OSF-2 as a potential prognostic biomarker and drug target, promoting metastases by supporting the tumor microenvironment and lymph node metastases survival rather than by enhancing primary tumor proliferation or therapy resistance.
Collapse
Affiliation(s)
- Désirée Gül
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Andrea Schweitzer
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Aya Khamis
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, El Azareta, Alexandria, Egypt
| | - Shirley K. Knauer
- Institute for Molecular Biology, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Universitätsstraße, 45117 Essen, Germany;
| | - Guo-Bin Ding
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| | - Laura Freudelsperger
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Ioannis Karampinis
- Academic Thoracic Center, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany;
| | - Jan Hagemann
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology, Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (A.S.); (A.K.); (L.F.); (J.H.)
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
| |
Collapse
|
6
|
Metastasis prevention: targeting causes and roots. Clin Exp Metastasis 2022; 39:505-519. [PMID: 35347574 DOI: 10.1007/s10585-022-10162-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
The spread of tumor cells from the primary focus, metastasis, is the main cause of cancer mortality. Therefore, anticancer therapy should be focused on the prevention of metastatic disease. Key targets can be conditions in the primary tumor that are favorable for the appearance of metastatic cells and the first steps of the metastatic cascade. Here, we discuss different approaches for targeting metastasis causes (hypoxia, metabolism changes, and tumor microenvironment) and roots (angiogenesis, epithelial-mesenchymal transition, migration, and invasion). Also, we emphasize the challenges of the existing approaches for metastasis prevention and suggest opportunities to overcome them. In conclusion, we highlight the importance of clinical evaluation of the agents showing antimetastatic effects in vivo, especially in patients with early-stage cancers, the identification of metastatic seeds, and the development of therapeutics for their eradication.
Collapse
|
7
|
Kim MJ, Kawk HW, Kim SH, Lee HJ, Seo JW, Lee CY, Kim YM. The p53-Driven Anticancer Effect of Ribes fasciculatum Extract on AGS Gastric Cancer Cells. Life (Basel) 2022; 12:life12020303. [PMID: 35207590 PMCID: PMC8876336 DOI: 10.3390/life12020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer metastasis is directly related to the survival rate of cancer patients. Although cancer metastasis proceeds by the movement of cancer cells, it is fundamentally caused by its resistance to anoikis, a mechanism of apoptosis caused by the loss of adhesion of cancer cells. Therefore, it was found that inhibiting cancer migration and reducing anoikis resistance are important for cancer suppression, and natural compounds can effectively control it. Among them, Ribes fasciculatum, which has been used as a medicinal plant, was confirmed to have anticancer potential, and experiments were conducted to prove various anticancer effects by extracting Ribes fasciculatum (RFE). Through various experiments, it was observed that RFE induces apoptosis of AGS gastric cancer cells, arrests the cell cycle, induces oxidative stress, and reduces mobility. It was also demonstrated that anoikis resistance was attenuated through the downregulation of proteins, such as epidermal growth factor receptor (EGFR). Moreover, the anticancer effect of RFE depends upon the increase in p53 expression, suggesting that RFE is suitable for the development of p53-targeted anticancer materials. Moreover, through xenotransplantation, it was found that the anticancer effect of RFE confirmed in vitro was continued in vivo.
Collapse
|
8
|
Shinde SD, Rao KB, Behera SK, Arya N, Sahu B. Epithelial cell adhesion molecule (EpCAM) binding short peptides derived from antibody MOC-31; De-novo design, synthesis and their in-vitro evaluation. Biochem Biophys Res Commun 2022; 600:1-5. [PMID: 35182969 DOI: 10.1016/j.bbrc.2022.01.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
Abstract
Epithelial cell adhesion molecule (EpCAM) is one of the critical bio-maker for circulating tumor cells (CTC) detection. For capturing CTC, antibody-antigen-based techniques have mainly been explored. However, the expensiveness and tedious manufacturing process have posed certain limitations for antibody-based techniques for its wide applications in cell capturing. On the other hand, peptides are inexpensive bimolecular probes with high specificity and tunability. Although there are few reports on EpCAM binding peptides are available in literature, those peptides were selected through random library screening. Interestingly, de-novo design of the peptides against EpCAM has not been reported till date. For the first time, we have developed a small peptide (Pep14) from the complementary derived region (CDRs) of antibody MOC31 through systematic virtual screening. Selected peptide has demonstrated good binding affinity towards EpCAM with dissociation constant (Kd) of 870 nM and found to be co-localized with the anti-EpCAM antibody in EpCAM expressing cancer cells (MCF-7). Therefore, the short peptide Pep14 hold promise for capturing circulatory tumor cells through EpCAM binding.
Collapse
Affiliation(s)
- Suchita D Shinde
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, 380054, India
| | - Kamya B Rao
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, 380054, India
| | - Santosh K Behera
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, 380054, India
| | - Neha Arya
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, 380054, India
| | - Bichismita Sahu
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, 380054, India.
| |
Collapse
|
9
|
Gribko A, Stiefel J, Liebetanz L, Nagel SM, Künzel J, Wandrey M, Hagemann J, Stauber RH, Freese C, Gül D. IsoMAG-An Automated System for the Immunomagnetic Isolation of Squamous Cell Carcinoma-Derived Circulating Tumor Cells. Diagnostics (Basel) 2021; 11:2040. [PMID: 34829387 PMCID: PMC8623084 DOI: 10.3390/diagnostics11112040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND detailed information about circulating tumor cells (CTCs) as an indicator of therapy response and cancer metastasis is crucial not only for basic research but also for diagnostics and therapeutic approaches. Here, we showcase a newly developed IsoMAG IMS system with an optimized protocol for fully automated immunomagnetic enrichment of CTCs, also revealing rare CTC subpopulations. METHODS using different squamous cell carcinoma cell lines, we developed an isolation protocol exploiting highly efficient EpCAM-targeting magnetic beads for automated CTC enrichment by the IsoMAG IMS system. By FACS analysis, we analyzed white blood contamination usually preventing further downstream analysis of enriched cells. RESULTS 1 µm magnetic beads with tosyl-activated hydrophobic surface properties were found to be optimal for automated CTC enrichment. More than 86.5% and 95% of spiked cancer cells were recovered from both cell culture media or human blood employing our developed protocol. In addition, contamination with white blood cells was minimized to about 1200 cells starting from 7.5 mL blood. Finally, we showed that the system is applicable for HNSCC patient samples and characterized isolated CTCs by immunostaining using a panel of tumor markers. CONCLUSION Herein, we demonstrate that the IsoMAG system allows the detection and isolation of CTCs from HNSCC patient blood for disease monitoring in a fully-automated process with a significant leukocyte count reduction. Future developments seek to integrate the IsoMAG IMS system into an automated microfluidic-based isolation workflow to further facilitate single CTC detection also in clinical routine.
Collapse
Affiliation(s)
- Alena Gribko
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Janis Stiefel
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany; (J.S.); (L.L.)
| | - Lana Liebetanz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany; (J.S.); (L.L.)
| | - Sophie Madeleine Nagel
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Julian Künzel
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Madita Wandrey
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Jan Hagemann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Roland H. Stauber
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| | - Christian Freese
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany; (J.S.); (L.L.)
| | - Désirée Gül
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany; (A.G.); (S.M.N.); (M.W.); (J.H.); (R.H.S.)
| |
Collapse
|
10
|
Wang Y, Zhang J, Li YJ, Yu NN, Liu WT, Liang JZ, Xu WW, Sun ZH, Li B, He QY. MEST promotes lung cancer invasion and metastasis by interacting with VCP to activate NF-κB signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:301. [PMID: 34560900 PMCID: PMC8464132 DOI: 10.1186/s13046-021-02107-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
Background Cell invasion is a hallmark of metastatic cancer, leading to unfavorable clinical outcomes. In this study, we established two highly invasive lung cancer cell models (A549-i8 and H1299-i8) and identified mesoderm-specific transcript (MEST) as a novel invasive regulator of lung cancer. We aim to characterize its biological function and clinical significance in lung cancer metastasis. Methods Transwell invasion assay was performed to establish high-invasive lung cancer cell model. Immunohistochemistry (IHC) was used to detect MEST expression in tumor tissues. Mass spectrometry and bioinformatic analyses were used to identify MEST-regulated proteins and binding partners. Co-immunoprecipitation assay was performed to detect the interaction of MEST and VCP. The biological functions of MEST were investigated in vitro and in vivo. Immunofluorescence staining was conducted to explore the colocalization of MEST and VCP. Results MEST overexpression promoted metastasis of lung cancer cells in vivo and in vitro by activating NF-κB signaling. MEST increased the interaction between VCP and IκBα, which accelerated IκBα degradation and NF-κB activation. Such acceleration was abrogated by VCP silencing, indicating that MEST is an upstream activator of the VCP/IκBα/NF-κB signaling pathway. Furthermore, high expressions of MEST and VCP were associated with poor survival of lung cancer patients. Conclusion Collectively, these results demonstrate that MEST plays an important role in driving invasion and metastasis of lung cancer by interacting with VCP to coordinate the IκBα/NF-κB pathway. Targeting the MEST/VCP/IκBα/NF-κB signaling pathway may be a promising strategy to treat lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02107-1.
Collapse
Affiliation(s)
- Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yang-Jia Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nan-Nan Yu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wan-Ting Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jun-Ze Liang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, China
| | - Zheng-Hua Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
11
|
Charmsaz S, Doherty B, Cocchiglia S, Varešlija D, Marino A, Cosgrove N, Marques R, Priedigkeit N, Purcell S, Bane F, Bolger J, Byrne C, O'Halloran PJ, Brett F, Sheehan K, Brennan K, Hopkins AM, Keelan S, Jagust P, Madden S, Martinelli C, Battaglini M, Oesterreich S, Lee AV, Ciofani G, Hill ADK, Young LS. ADAM22/LGI1 complex as a new actionable target for breast cancer brain metastasis. BMC Med 2020; 18:349. [PMID: 33208158 PMCID: PMC7677775 DOI: 10.1186/s12916-020-01806-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Metastatic breast cancer is a major cause of cancer-related deaths in woman. Brain metastasis is a common and devastating site of relapse for several breast cancer molecular subtypes, including oestrogen receptor-positive disease, with life expectancy of less than a year. While efforts have been devoted to developing therapeutics for extra-cranial metastasis, drug penetration of blood-brain barrier (BBB) remains a major clinical challenge. Defining molecular alterations in breast cancer brain metastasis enables the identification of novel actionable targets. METHODS Global transcriptomic analysis of matched primary and metastatic patient tumours (n = 35 patients, 70 tumour samples) identified a putative new actionable target for advanced breast cancer which was further validated in vivo and in breast cancer patient tumour tissue (n = 843 patients). A peptide mimetic of the target's natural ligand was designed in silico and its efficacy assessed in in vitro, ex vivo and in vivo models of breast cancer metastasis. RESULTS Bioinformatic analysis of over-represented pathways in metastatic breast cancer identified ADAM22 as a top ranked member of the ECM-related druggable genome specific to brain metastases. ADAM22 was validated as an actionable target in in vitro, ex vivo and in patient tumour tissue (n = 843 patients). A peptide mimetic of the ADAM22 ligand LGI1, LGI1MIM, was designed in silico. The efficacy of LGI1MIM and its ability to penetrate the BBB were assessed in vitro, ex vivo and in brain metastasis BBB 3D biometric biohybrid models, respectively. Treatment with LGI1MIM in vivo inhibited disease progression, in particular the development of brain metastasis. CONCLUSION ADAM22 expression in advanced breast cancer supports development of breast cancer brain metastasis. Targeting ADAM22 with a peptide mimetic LGI1MIM represents a new therapeutic option to treat metastatic brain disease.
Collapse
Affiliation(s)
- Sara Charmsaz
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ben Doherty
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Sinéad Cocchiglia
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Damir Varešlija
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Attilio Marino
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Nicola Cosgrove
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ricardo Marques
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Nolan Priedigkeit
- Women's Cancer Research Centre, Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Siobhan Purcell
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Fiona Bane
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jarlath Bolger
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Christopher Byrne
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Philip J O'Halloran
- Department of Neurosurgery, National Neurosurgical Centre, Beaumont Hospital, Dublin, Ireland
| | - Francesca Brett
- Department of Neuropathology, Beaumont Hospital, Dublin, Ireland
| | - Katherine Sheehan
- Department of Pathology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kieran Brennan
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Stephen Keelan
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Petra Jagust
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Chiara Martinelli
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Scuola Superiore Sant'Anna, Pontedera, Italy.,The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Steffi Oesterreich
- Women's Cancer Research Centre, Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Centre, Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Arnold D K Hill
- Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
12
|
Meng Y, Bian L, Zhang M, Bo F, Lu X, Li D. Liquid biopsy and their application progress in head and neck cancer: focus on biomarkers CTCs, cfDNA, ctDNA and EVs. Biomark Med 2020; 14:1393-1404. [PMID: 33073579 DOI: 10.2217/bmm-2020-0022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
Head and neck cancer (HNC) is the sixth leading cause of cancer death worldwide. Due to the low early diagnosis rate of HNC, local recurrence and high distant metastasis rate are the main reasons for treatment failure. Therefore, it is important to establish a method of diagnosis and monitoring, which is convenient, safe, reproducible, sensitive and specific. Compared with tissue biopsy, liquid biopsy is an emerging biopsy technique, which has the advantages of re-sampling, noninvasive and cost-effectiveness, and has shown good diagnostic and prognostic value in studies for various types of malignant solid tumors. This review introduces liquid biopsy, its research progress and prospects in HNC including early diagnosis, staging, grading, prognosis assessment and disease surveillance.
Collapse
Affiliation(s)
- Yiling Meng
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Bo
- Department of Otolaryngology-Head & Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Lu
- Department of Stomatology, Shanghai Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Künzel J, Gribko A, Lu Q, Stauber RH, Wünsch D. Nanomedical detection and downstream analysis of circulating tumor cells in head and neck patients. Biol Chem 2020; 400:1465-1479. [PMID: 30903749 DOI: 10.1515/hsz-2019-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/14/2019] [Indexed: 12/27/2022]
Abstract
The establishment of novel biomarkers in liquid biopsies of cancer patients has come more into focus in prognostic and diagnostic research efforts. Due to their prognostic relevance disseminated tumor cells or circulating tumor cells are the subject of intensive research and are discussed as early diagnostic indicators for treatment failure and the formation of micrometastases. A potential association of this early-systemic tumor component with poor prognosis of cancer patients could be already demonstrated for various entities including breast, colon, lung, melanoma, ovarian and prostate cancers. Thus, the detection of circulating tumor cells seems to be also applicable for minimal-invasive monitoring of therapy progress in head and neck cancer patients. A major problem of the use in clinical routine is that circulating tumor cells could not be detected by modern imaging techniques. To overcome these limitations highly sensitive detection methods and techniques for their molecular characterization are urgently needed allowing mechanistic understanding and targeting of circulating tumor cells. Especially the medical application of nanotechnology (nanomedical methods) has made valuable contributions to the field. Here, we want to provide a comprehensive overview on (nanomedical) detection methods for circulating tumor cells and discuss their merits, pitfalls and future perspectives especially for head and neck solid squamous cell carcinoma (HNSCC) patients.
Collapse
Affiliation(s)
- Julian Künzel
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Alena Gribko
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department/Department of Otorhinolaryngology-Head and Neck Surgery/ENT, University Medical Center Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany
| |
Collapse
|
14
|
Hu B, Tian X, Li Y, Liu Y, Yang T, Han Z, An J, Kong L, Li Y. Epithelial-mesenchymal transition may be involved in the immune evasion of circulating gastric tumor cells via downregulation of ULBP1. Cancer Med 2020; 9:2686-2697. [PMID: 32077634 PMCID: PMC7163085 DOI: 10.1002/cam4.2871] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background Increasing numbers of studies have demonstrated that circulating tumor cells (CTCs) undergo a phenotypic change termed epithelial‐mesenchymal transition (EMT), and researchers have proposed that EMT might provide CTCs with increased potential to survive in the different microenvironments encountered during metastasis through various ways, such as by increasing cell survival and early colonization. However, the exact role of EMT in CTCs remains unclear. Methods In this study, we identified CTCs of 41 patients with gastric cancer using Cyttel‐CTC and im‐FISH (immune‐fluorescence in situ hybridization) methods, and tested the expression of EMT markers and ULBP1 (a major member of the NKG2D—natural killer [NK] group 2 member D—ligand family) on CTCs. Moreover, we investigated the relationship between the expression of EMT markers and ULBP1 on CTCs and gastric cancer cell lines. Results Our results showed that the CTCs of gastric cancer patients exhibited three EMT marker subtypes, and that the expression of ULBP1 was significantly lower on mesenchymal phenotypic CTCs (M+CTCs) than on epithelial phenotypic CTCs (E+CTCs). EMT induced by TGF‐β in vitro produced a similar phenomenon, and we therefore proposed that EMT might be involved in the immune evasion of CTCs from NK cells by altering the expression of ULBP1. Conclusions Our study indicated that EMT might play a vital role in the immune invasion of CTCs by regulating the expression of ULBP1 on CTCs. These findings could provide potential strategies for targeting the immune evasion capacity of CTCs.
Collapse
Affiliation(s)
- Baoguang Hu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Xiaokun Tian
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China.,Department of Burn and Plastic Surgery, the Sixth People's Hospital of Zibo, Zibo, China
| | - Yanbin Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yangchun Liu
- Jiangxi Medical College, Queen Mary College of Nanchang University, Nanchang, China
| | - Tao Yang
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Zhaodong Han
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Lingqun Kong
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yuming Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
15
|
Pan H, Cui J, Cai K, Zhou Y. Increased cancer-specific mortality of very small size in carcinoembryonic antigen-elevated rectal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:447. [PMID: 31700883 DOI: 10.21037/atm.2019.08.81] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background The present study aimed to investigate the cause-specific survival (CSS) of very small rectal cancer in the context of preoperative serum carcinoembryonic antigen (CEA) elevation. Methods Patients diagnosed with node-negative rectal cancer from the Surveillance, Epidemiology, and End Results (SEER) database from January 2004 to December 2010 meeting the inclusion criteria were identified for this study. The Cox proportional hazards regression analyses were conducted to identify independent factors associated with CSS. Pearson's chi-squared tests and Kaplan-Meier methods were performed. Results A total of 8,413 patients were included into our study. Kaplan-Meier analyses showed lower 7-year CSS rate of very small tumors (≤5 mm) compared to those larger than 40 mm (70.4% vs. 76.0%, log-rank P=0.469). Multivariate Cox analyses showed that patients with very small tumor size (≤5 mm) was also associated with a significantly increased risk of cancer-specific mortality compared with those with large tumor size (HR =2.567, 95% CI: 1.285 to 5.130, P=0.008, using ≥41 mm, C+ as a reference). Conclusions Very small tumor size in the context of preoperative serum CEA elevation could be a surrogate for biological aggressiveness. Our finding would provide a better understanding of tumor biology for us and elicit more future biological researches.
Collapse
Affiliation(s)
- Haiqiang Pan
- Department of Colorectal Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Junhui Cui
- Department of Colorectal Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Ke Cai
- Department of Colorectal Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Yena Zhou
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
16
|
CTCs 2020: Great Expectations or Unreasonable Dreams. Cells 2019; 8:cells8090989. [PMID: 31461978 PMCID: PMC6769853 DOI: 10.3390/cells8090989] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor cells (CTCs) are cellular elements that can be scattered into the bloodstream from primary cancer, metastasis, and even from a disseminated tumor cell (DTC) reservoir. CTCs are “seeds”, able to give rise to new metastatic lesions. Since metastases are the cause of about 90% of cancer-related deaths, the significance of CTCs is unquestionable. However, two major issues have stalled their full clinical exploitation: rarity and heterogeneity. Therefore, their full clinical potential has only been predicted. Finding new ways of studying and using such tremendously rare and important events can open new areas of research in the field of cancer research, and could drastically improve tumor companion diagnostics, personalized treatment strategies, overall patients management, and reduce healthcare costs.
Collapse
|
17
|
Glatzel-Plucińska N, Piotrowska A, Dzięgiel P, Podhorska-Okołów M. The Role of SATB1 in Tumour Progression and Metastasis. Int J Mol Sci 2019; 20:E4156. [PMID: 31450715 PMCID: PMC6747166 DOI: 10.3390/ijms20174156] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Carcinogenesis is a long-drawn, multistep process, in which metastatic spread is an unequivocal hallmark of a poor prognosis. The progression and dissemination of epithelial cancers is commonly thought to rely on the epidermal-mesenchymal transition (EMT) process. During EMT, epithelial cells lose their junctions and apical-basal polarity, and they acquire a mesenchymal phenotype with its migratory and invasive capabilities. One of the proteins involved in cancer progression and EMT may be SATB1 (Special AT-Rich Binding Protein 1)-a chromatin organiser and a global transcriptional regulator. SATB1 organizes chromatin into spatial loops, providing a "docking site" necessary for the binding of further transcription factors and chromatin modifying enzymes. SATB1 has the ability to regulate whole sets of genes, even those located on distant chromosomes. SATB1 was found to be overexpressed in numerous malignancies, including lymphomas, breast, colorectal, prostate, liver, bladder and ovarian cancers. In the solid tumours, an elevated SATB1 level was observed to be associated with an aggressive phenotype, presence of lymph node, distant metastases, and a poor prognosis. In this review, we briefly describe the prognostic significance of SATB1 expression in most common human cancers, and analyse its impact on EMT and metastasis.
Collapse
Affiliation(s)
- Natalia Glatzel-Plucińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland
| | | |
Collapse
|
18
|
Zheng X, Chen Y, Bai M, Liu Y, Xu B, Sun R, Zeng H. The antimetastatic effect and underlying mechanisms of thioredoxin reductase inhibitor ethaselen. Free Radic Biol Med 2019; 131:7-17. [PMID: 30496814 DOI: 10.1016/j.freeradbiomed.2018.11.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022]
Abstract
Treating cancer metastasis is of vital importance to prolong patients' survival. Thioredoxin reductase (TrxR) is overexpressed in many cancer types and has been recognized as an anti-cancer target. The organoselenium compound ethaselen (BBSKE) has been proved to be a TrxR inhibitor and inhibit various types of tumor growth. However, whether BBSKE could inhibit tumor metastasis remains unclear. In this study, we aim to explore the antimetastatic effect of BBSKE and underlying mechanisms. BBSKE was found to dose-dependently suppress migration and invasion of MCF-7 and LoVo cells in vitro. The underlying mechanisms may include inhibition of TrxR activity, elevation of reactive oxygen species (ROS), decrease of EGFR activation and HER2 expression. Besides, the epithelial to mesenchymal transition process and expression of CD44, MMP-9, VEGFR2 and PD-L1 were also abrogated. Decreased migration and invasion, lower expression levels of EGFR, HER2, N-cadherin, CD44, MMP-9, VEGFR2 and PD-L1 were also observed in TrxR1-knockdown MCF-7 and LoVo cells. In the mouse breast cancer 4T1 model, BBSKE not only inhibited progression of primary tumor, but also suppressed formation of metastatic lung nodules and liver micro-metastases, indicating that BBSKE could effectively abolish tumor metastasis. In conclusion, our findings show that BBSKE is able to inhibit migration and invasion of cancer cells in vitro and in vivo, and may be used to prevent and treat metastasis.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Yifan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Man Bai
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Yuxi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Binyuan Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Ruoxuan Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China
| | - Huihui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China; Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
19
|
Liu Q, Luo D, Li Q, Zhu J, Li X. Evaluating the Effect of Lymph Node Status on Survival in Large Colon Cancer. Front Oncol 2018; 8:602. [PMID: 30619744 PMCID: PMC6298250 DOI: 10.3389/fonc.2018.00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/27/2018] [Indexed: 01/20/2023] Open
Abstract
Objective: This study aimed to investigate the effect of lymph node status on survival in large colon cancer. Methods: In the first cohort, patients diagnosed with non-metastatic colon cancer (N = 176,834) were identified from the Surveillance, Epidemiology, and End Results (SEER) database between January 1988 and December 2005. Further analyses were conducted in the other cohort (N = 855) from the Fudan University Shanghai Cancer Center (FUSCC) database. Results: In the SEER cohort, CSS differences increased as the tumor enlarged until a threshold tumor size group (tumor measuring 7-8 cm, P < 0.001) was reached, in which node positivity showed the maximum negative effect on CSS; multivariate Cox analyses showed that tumors measuring 7-8 cm presented a significant lower risk of cancer-specific mortality compared with those measuring 2-4 cm [hazard ratio (HR) = 1.087; 95% confidence interval (CI) = 1.014-1.165, P = 0.018]. In the FUSCC cohort, N0 tumors measuring 21-40 mm presented a higher risk of recurrence compared with those measuring 41-80 mm. Conclusions: Mortality risk of node positivity increased as tumor enlarged until a threshold tumor size (tumor size of 7-8 cm) was reached, mainly resulting from larger tumors without lymph node involvement being a surrogate for biologically indolent colon cancer of tumor recurrence. Our study could provide both researchers and clinicians a better understanding of colon cancer biology.
Collapse
Affiliation(s)
- Qi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dakui Luo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ji Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Jie Z, Xie Z, Zhao X, Sun X, Yu H, Pan X, Shen S, Qin A, Fang X, Fan S. Glabridin inhibits osteosarcoma migration and invasion via blocking the p38- and JNK-mediated CREB-AP1 complexes formation. J Cell Physiol 2018; 234:4167-4178. [PMID: 30146723 DOI: 10.1002/jcp.27171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/17/2018] [Indexed: 01/11/2023]
Abstract
Osteosarcoma is the most common bone malignancy, and it seriously affects the quality of life of affected children and adolescents. Glabridin (GLA), a major component of licorice root extract, has been reported to exert antitumor effects against a variety of tumor types; however, its effects on osteosarcoma have not been elucidated. In the current study, we investigate the effects and potential antimetastatic mechanisms of GLA on osteosarcoma in vitro and in vivo. Flow cytometry showed that GLA induced G2/M cell cycle phase arrest and promoted cell apoptosis. Transwell and wound-healing assays showed that GLA significantly decreased the migration and invasion of osteosarcoma cells. Further western blotting and quantitative real-time polymerase chain reaction showed that the expression of matrix metalloproteinase (MMP)-2 and MMP-9 in MG63 and HOS cells were reduced after GLA treatment. Moreover, western blotting demonstrated that GLA downregulated the phosphorylation of p38 mitogen-activated protein kinases and c-Jun N-terminal kinase. A coimmunoprecipitation assay illustrated that formation of cAMP response element-binding protein (CREB)-activating protein 1 (AP1) complexes and the DNA binding activities of CREB and AP1 in MG63 and HOS cells were impaired following treatment with GLA. Finally, GLA inhibited tumor growth and suppressed osteosarcoma cell metastasis in vivo. Overall, our findings highlight the potential of GLA as a therapeutic agent for the prevention and treatment of tumor metastasis.
Collapse
Affiliation(s)
- Zhiwei Jie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xuewu Sun
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Hejun Yu
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Pan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai, China
| | - Xiangqian Fang
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shunwu Fan
- Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Griffin LR, Thamm DH, Selmic LE, Ehrhart E, Randall E. Pilot study utilizing Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography for glycolytic phenotyping of canine mast cell tumors. Vet Radiol Ultrasound 2018; 59:461-468. [DOI: 10.1111/vru.12612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 10/10/2017] [Accepted: 10/19/2017] [Indexed: 10/17/2022] Open
Affiliation(s)
- Lynn R. Griffin
- Department of Environmental and Radiological Health Sciences (ERHS); Colorado State University; Fort Collins CO 80523
| | - Doug H. Thamm
- Flint Animal Cancer Center (FACC); Colorado State University; Fort Collins CO 80523
| | - Laura E. Selmic
- Department of Veterinary Clinical Medicine; University of Illinois; Urbana IL 61802
| | - E.J. Ehrhart
- Flint Animal Cancer Center (FACC); Colorado State University; Fort Collins CO 80523
| | - Elissa Randall
- Department of Environmental and Radiological Health Sciences (ERHS); Colorado State University; Fort Collins CO 80523
| |
Collapse
|
22
|
Wei H, Yu X, Xue X, Liu H, Wang M, Li Y, Wang X, Ding H. Urotensin II receptor as a potential biomarker for the prognosis of hepatocellular carcinoma patients. Oncol Lett 2017; 14:2749-2756. [PMID: 28927036 PMCID: PMC5588126 DOI: 10.3892/ol.2017.6545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/26/2017] [Indexed: 12/18/2022] Open
Abstract
Urotensin II and the associated urotensin II receptor (UTR) are important in the carcinogenesis of hepatocellular carcinoma (HCC). However, the clinical significance of UTR remains to be elucidated. The aim of the present study was to investigate if UTR exhibits the potential to act as a biomarker to predict the prognosis of HCC patients. The effects of UTR on motility and invasion of HCC cells were additionally investigated. UTR expression levels were determined by immunohistochemistry, in 83 HCC patients that previously underwent curative liver resection. The association between UTR levels and clinicopathological data were analyzed. In vitro, the expressions of UTR in QSG-7701, BEL-7402 and MHCC-97H cell lines were determined via western blotting. Small interfering (si)RNA was used to downregulate UTR in BEL-7402 and MHCC-97H cell lines, and the effects of UTR on tumor cell motility were tested by Transwell assay. UTR expression was associated with tumor number, size, histology and tumor node metastasis/Barcelona Clinic Liver Cancer HCC stage. UTR expression levels were additionally associated with recurrence-free and overall survival in HCC patients by Kaplan-Meier curve analysis (P<0.0001). In vitro, UTR expression levels were increased in BEL-7402 and MHCC-97H cell lines, compared with QSG-7701 (P<0.05). siRNA-mediated silencing of the UTR gene significantly inhibited cell motility in BEL-7402 and MHCC-97H cells. The results indicated that UTR may be regarded as a novel biomarker to predict outcomes following radical liver resection and as a potential therapeutic target to inhibit invasion and metastasis of HCC.
Collapse
Affiliation(s)
- Hongtao Wei
- Department of Emergency, Beijing Friendship Hospital, Capital Medical University, Beijing 100069, P.R. China.,Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaotong Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Xiaowei Xue
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Hui Liu
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Menglong Wang
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yingying Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Xuejiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
23
|
Dvorak P, Hlavac V, Mohelnikova-Duchonova B, Liska V, Pesta M, Soucek P. Downregulation of ABC Transporters in Non-neoplastic Tissues Confers Better Prognosis for Pancreatic and Colorectal Cancer Patients. J Cancer 2017; 8:1959-1971. [PMID: 28819395 PMCID: PMC5559956 DOI: 10.7150/jca.19364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/18/2017] [Indexed: 12/30/2022] Open
Abstract
Transport of a wide variety of substrates, including xenobiotics, is one of the main functions attributed to human ATP-binding cassette (ABC) proteins. Overexpression of ABC genes is considered to be an important mechanism facilitating the development of chemoresistance. Relationships between the expression levels of ABC genes in tumor tissues and established clinicopathological features were extensively studied previously. The current study tested our hypothesis that the expression levels of ABC genes in non-neoplastic (control) tissues also provide important information in relation to the relevant tumor progression. Expression levels of all human ABC genes (48 protein coding and one pseudogene), measured by qRT-PCR, were bioinformatically analyzed. The data originated from four independently collected cohorts covering three types of tumors - breast, colorectal and pancreatic carcinomas. ABC gene expression profiles (signatures) in non-neoplastic tissues (matched to tumor samples from three different tumor types) were characteristically clustered into three main types - those with the vast majority of the genes downregulated, upregulated or heterogeneously regulated. The clusters with mostly downregulated and upregulated genes were shown to possess significant relations to good and poor prognostic markers, respectively, in pancreatic and colorectal cancers. The present findings support the theory that the expression of ABC genes in non-neoplastic tissues can significantly contribute to tumor pathogenesis. Suggested multi-gene panels, consisting of the reduced number of ABC genes, have the potential to be implemented as new prognostic markers, which are especially urgent in pancreatic cancer. The results can also stimulate further primary research in carcinogenesis.
Collapse
Affiliation(s)
- Pavel Dvorak
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Viktor Hlavac
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, IP Pavlova 6, 77520, Olomouc, Czech Republic
| | - Vaclav Liska
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic.,Deparment of Surgery, Faculty Hospital and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 30460, Pilsen, Czech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Pavel Soucek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| |
Collapse
|
24
|
Cheng W, Liu Z, Yu Y, van Ofwegen L, Proksch P, Yu S, Lin W. An unusual spinaceamine-bearing pregnane from a soft coral Scleronephthya sp. inhibits the migration of tumor cells. Bioorg Med Chem Lett 2017; 27:2736-2741. [DOI: 10.1016/j.bmcl.2017.04.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/08/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
25
|
Zhao X, Xu Z, Li H. NSAIDs Use and Reduced Metastasis in Cancer Patients: results from a meta-analysis. Sci Rep 2017; 7:1875. [PMID: 28500305 PMCID: PMC5431951 DOI: 10.1038/s41598-017-01644-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
This meta-analysis investigated the relationship between non-steroidal anti-inflammatory drugs (NSAIDs) and lymph node/distant metastasis. Relevant sources were identified from MEDLINE, EMBASE, PubMed, and Cochrane Library. Studies that reported the odds ratio (OR)/risk ratio (RR)/hazard ratio (HR) with 95% confidence intervals (CIs) for the associations of interested outcomes were included. Pooled effect estimates were obtained by using random- or fixed-effect model depending on the heterogeneity across these studies. Sixteen studies involving 202780 participants, including prostate, breast, lung, and colorectal cancer patients, were included. Compared with the reference, generally patients exposed to NSAIDs at pre- and post-diagnosis experienced a significantly reduced risk of distant metastasis (RR 0.708, 95% CI 0.586–0.856 and RR: 0.484, 95% CI: 0.393–0.595, respectively), including prostate cancer (pre-diagnostic use: RR = 0.874, 95% CI, 0.787–0.97; post-diagnostic use: RR = 0.482, 95% CI 0.359–0.647), and breast cancer (pre-diagnostic use: RR = 0.644, 95% CI 0.565–0.735; post-diagnostic use: RR = 0.485, 95% CI 0.362–0.651). However, lymph node metastasis was weakly related with pre-diagnostic use of NSAIDs (RR = 0.949, 95% CI 0.914–0.985). NSAIDs are related to a significantly reduced risk of metastasis development, regardless of pre-diagnostic or post-diagnostic use. However, NSAIDs and lymph node metastasis are weakly associated. Our finding suggested a novel metastasis management.
Collapse
Affiliation(s)
- Xiaoping Zhao
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haoseng Li
- Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|