1
|
Zhu Z, Tang R, Huff S, Kummetha IR, Wang L, Li N, Rana TM. Small-molecule PTPN2 Inhibitors Sensitize Resistant Melanoma to Anti-PD-1 Immunotherapy. CANCER RESEARCH COMMUNICATIONS 2023; 3:119-129. [PMID: 36968224 PMCID: PMC10035454 DOI: 10.1158/2767-9764.crc-21-0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/23/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Although immune checkpoint inhibitors targeting T-cell immunoregulatory proteins have revolutionized cancer treatment, they are effective only in a limited number of patients, and new strategies are needed to enhance tumor responses to immunotherapies. Deletion of protein tyrosine phosphatase non-receptor type 2 (Ptpn2), a regulator of growth factor and cytokine signaling pathways, has been shown to sensitize murine B16F10 melanoma cells to IFNγ and anti-PD-1 immunotherapy. Here, we investigated the potential therapeutic utility of small-molecule PTPN2 inhibitors. Ten inhibitors were synthesized on the basis of in silico modeling and structure-based design and functionally tested in vitro and in vivo. We show that the inhibitors had little effect on B16F10 cells alone, but effectively sensitized the tumor cells to IFNγ treatment in vitro and to anti-PD-1 therapy in vivo. Under both conditions, Ptpn2 inhibitor cotreatment suppressed B16F10 cell growth and enhanced Stat1 phosphorylation and expression of IFNγ response genes. In vivo, PTPN2 inhibitor cotreatment significantly reduced melanoma and colorectal tumor growth and enhanced mouse survival compared with anti-PD-1 treatment alone, and this was accompanied by increased tumor infiltration by granzyme B+ CD8+ T cells. Similar results were obtained with representative murine and human colon cancer and lung cancer cell lines. Collectively, these results demonstrate that small-molecule inhibitors of PTPN2 may have clinical utility as sensitizing agents for immunotherapy-resistant cancers. Significance To enhance the effectiveness of immunotherapies in resistant or nonresponsive cancers, it is important to develop inhibitors of enzymes that negatively influence the outcome of treatments. We have designed and evaluated small-molecule inhibitors of PTPN2 demonstrating that these compounds may have clinical utility as sensitizing agents for immunotherapy-resistant cancers.
Collapse
Affiliation(s)
- Zhouting Zhu
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Rachel Tang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Sarah Huff
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Indrasena Reddy Kummetha
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Lingling Wang
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Na Li
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, University of California San Diego, La Jolla, California
- San Diego Center for Precision Immunotherapy, Moores Cancer Center, University of California San Diego, La Jolla, California
| |
Collapse
|
2
|
Song J, Lan J, Tang J, Luo N. PTPN2 in the Immunity and Tumor Immunotherapy: A Concise Review. Int J Mol Sci 2022; 23:ijms231710025. [PMID: 36077422 PMCID: PMC9456094 DOI: 10.3390/ijms231710025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
PTPN2 (protein tyrosine phosphatase non-receptor 2), also called TCPTP (T cell protein tyrosine phosphatase), is a member of the PTP family signaling proteins. Phosphotyrosine-based signaling of this non-transmembrane protein is essential for regulating cell growth, development, differentiation, survival, and migration. In particular, PTPN2 received researchers’ attention when Manguso et al. identified PTPN2 as a cancer immunotherapy target using in vivo CRISPR library screening. In this review, we attempt to summarize the important functions of PTPN2 in terms of its structural and functional properties, inflammatory reactions, immunomodulatory properties, and tumor immunity. PTPN2 exerts synergistic anti-inflammatory effects in various inflammatory cells and regulates the developmental differentiation of immune cells. The diversity of PTPN2 effects in different types of tumors makes it a potential target for tumor immunotherapy.
Collapse
|
3
|
Goh PK, Wiede F, Zeissig MN, Britt KL, Liang S, Molloy T, Goode N, Xu R, Loi S, Muller M, Humbert PO, McLean C, Tiganis T. PTPN2 elicits cell autonomous and non-cell autonomous effects on antitumor immunity in triple-negative breast cancer. SCIENCE ADVANCES 2022; 8:eabk3338. [PMID: 35196085 PMCID: PMC8865802 DOI: 10.1126/sciadv.abk3338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/24/2021] [Indexed: 05/22/2023]
Abstract
The tumor-suppressor PTPN2 is diminished in a subset of triple-negative breast cancers (TNBCs). Paradoxically, PTPN2-deficiency in tumors or T cells in mice can facilitate T cell recruitment and/or activation to promote antitumor immunity. Here, we explored the therapeutic potential of targeting PTPN2 in tumor cells and T cells. PTPN2-deficiency in TNBC associated with T cell infiltrates and PD-L1 expression, whereas low PTPN2 associated with improved survival. PTPN2 deletion in murine mammary epithelial cells TNBC models, did not promote tumorigenicity but increased STAT-1-dependent T cell recruitment and PD-L1 expression to repress tumor growth and enhance the efficacy of anti-PD-1. Furthermore, the combined deletion of PTPN2 in tumors and T cells facilitated T cell recruitment and activation and further repressed tumor growth or ablated tumors already predominated by exhausted T cells. Thus, PTPN2-targeting in tumors and/or T cells facilitates T cell recruitment and/or alleviates inhibitory constraints on T cells to combat TNBC.
Collapse
Affiliation(s)
- Pei Kee Goh
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Florian Wiede
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Mara N. Zeissig
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Kara L. Britt
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Shuwei Liang
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Tim Molloy
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Nathan Goode
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Rachel Xu
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Sherene Loi
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Mathias Muller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Patrick O. Humbert
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Catriona McLean
- Anatomical Pathology, Alfred Hospital, Prahran, Victoria 3004, Australia
| | - Tony Tiganis
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Corresponding author.
| |
Collapse
|
4
|
Protein Tyrosine Phosphatases: Mechanisms in Cancer. Int J Mol Sci 2021; 22:ijms222312865. [PMID: 34884670 PMCID: PMC8657787 DOI: 10.3390/ijms222312865] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Protein tyrosine kinases, especially receptor tyrosine kinases, have dominated the cancer therapeutics sphere as proteins that can be inhibited to selectively target cancer. However, protein tyrosine phosphatases (PTPs) are also an emerging target. Though historically known as negative regulators of the oncogenic tyrosine kinases, PTPs are now known to be both tumor-suppressive and oncogenic. This review will highlight key protein tyrosine phosphatases that have been thoroughly investigated in various cancers. Furthermore, the different mechanisms underlying pro-cancerous and anti-cancerous PTPs will also be explored.
Collapse
|
5
|
Zhao W, Hao L, Jia L, Wang J, Wang B, Huang Y, Zhao Y. TAFs contributes the function of PTPN2 in colorectal carcinogenesis through activating JAK/STAT signaling pathway. Am J Cancer Res 2021; 11:3085-3097. [PMID: 34249446 PMCID: PMC8263690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 06/13/2023] Open
Abstract
The morbidity and mortality of colorectal cancer (CRC) ranks fourth worldwide, moreover, the tumor microenvironment (TME) of CRC is quite complex, and is one of the necessary factors affecting promotion of tumor metastasis. PTPN2 is a tumor suppressor which plays an important role in cancer-related downstream molecular pathway. FSP-1 is highly-expressed in multiple types of tumor tissues and is a biomarker of stromal fibroblasts. To examine the function of PTPN2 in the metastasis of CRC, the study evaluated the co-expression level of PTPN2 and FSP-1 in CRC tissues by double staining, and demonstrated the relationship with clinical information about each patient. The roles of PTPN2 and FSP-1 were detected in vitro by proliferation and transwell assay through knockdown of expression level of PTPN2. Lower PTPN2 with higher FSP-1 expression was correlated with poor survival outcomes in CRC. TAFs contribute to the migration function of PTPN2 in CRC in vitro through inducing changes in the level of TGF-β1. Western blot and qRT-PCR assays were used to detect the mechanism of PTPN2 regulation of migration with TAFs in the JAK/STAT signaling pathway, moreover, TAFs contributed the function of PTPN2 in colorectal carcinogenesis in vivo. In summary, the study shed light on the effect of TAFs contributes the function of PTPN2 in colorectal carcinogenesis through activating JAK/STAT signaling pathway. In addition, double-staining assay could give us a unique perspective from which to study TME in CRC.
Collapse
Affiliation(s)
- Wei Zhao
- Research Center for The Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for NationalitiesBaise 533000, China
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, China
| | - Lei Hao
- Department of Pathophysiology, Inner Mongolia Medical UniversityInner Mongolia 010059, China
| | - Lizhou Jia
- Research Center for The Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for NationalitiesBaise 533000, China
- Central Laboratory, Bayannur HospitalInner Mongolia 015000, China
| | - Jinsong Wang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, China
| | - Bin Wang
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, China
| | - Yanqiang Huang
- Research Center for The Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for NationalitiesBaise 533000, China
| | - Youcai Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, China
| |
Collapse
|
6
|
Yao J, Deng K, Huang J, Zeng R, Zuo J. Progress in the Understanding of the Mechanism of Tamoxifen Resistance in Breast Cancer. Front Pharmacol 2020; 11:592912. [PMID: 33362547 PMCID: PMC7758911 DOI: 10.3389/fphar.2020.592912] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Tamoxifen is a drug commonly used in the treatment of breast cancer, especially for postmenopausal patients. However, its efficacy is limited by the development of drug resistance. Downregulation of estrogen receptor alpha (ERα) is an important mechanism of tamoxifen resistance. In recent years, with progress in research into the protective autophagy of drug-resistant cells and cell cycle regulators, major breakthroughs have been made in research on tamoxifen resistance. For a better understanding of the mechanism of tamoxifen resistance, protective autophagy, cell cycle regulators, and some transcription factors and enzymes regulating the expression of the estrogen receptor are summarized in this review. In addition, recent progress in reducing resistance to tamoxifen is reviewed. Finally, we discuss the possible research directions into tamoxifen resistance in the future to provide assistance for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Jingwei Yao
- Nanhua Hospital Affiliated to University of South China, Hengyang, China.,The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Kun Deng
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China
| | - Jialu Huang
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruimin Zeng
- Nanhua Hospital Affiliated to University of South China, Hengyang, China
| | - Jianhong Zuo
- Nanhua Hospital Affiliated to University of South China, Hengyang, China.,Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, China.,The Third Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
7
|
Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Cancers (Basel) 2020; 12:E2799. [PMID: 33003469 PMCID: PMC7599540 DOI: 10.3390/cancers12102799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a large number of therapeutic options available, malignant melanoma remains a highly fatal disease, especially in its metastatic forms. The oncogenic role of protein tyrosine phosphatases (PTPs) is becoming increasingly clear, paving the way for novel antitumor treatments based on their inhibition. In this review, we present the oncogenic PTPs contributing to melanoma progression and we provide, where available, a description of new inhibitory strategies designed against these enzymes and possibly useful in melanoma treatment. Considering the relevance of the immune infiltrate in supporting melanoma progression, we also focus on the role of PTPs in modulating immune cell activity, identifying interesting therapeutic options that may support the currently applied immunomodulating approaches. Collectively, this information highlights the value of going further in the development of new strategies targeting oncogenic PTPs to improve the efficacy of melanoma treatment.
Collapse
Affiliation(s)
- Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Angela Leo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| | - Giovanni Raugei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio” University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.P.); (E.P.); (A.L.); (G.R.)
| |
Collapse
|
8
|
Zhang T, He L, Wang Z, Dong W, Sun W, Qin Y, Zhang P, Zhang H. Calcitriol enhances Doxorubicin-induced apoptosis in papillary thyroid carcinoma cells via regulating VDR/PTPN2/p-STAT3 pathway. J Cell Mol Med 2020; 24:5629-5639. [PMID: 32285621 PMCID: PMC7214146 DOI: 10.1111/jcmm.15224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 12/29/2022] Open
Abstract
There is increasing evidence that vitamin D deficiency is the risk factor for multiple diseases, such as immune disorder, cardiovascular disease and cancer. Calcitriol is the active form of vitamin D with beneficial effects on anti‐cancer by binding vitamin D receptor (VDR). The primary aim of this study was to investigate the role of Calcitriol on papillary thyroid carcinoma (PTC) and explore the possible mechanism. We found nuclear VDR expression in PTC samples was negatively correlated with STAT3 hyperphosphorylation that indicated worse PTC clinicopathologic characteristics. Calcitriol treatment up‐regulated VDR and protein tyrosine phosphatase N 2 (PTPN2) expression, down‐regulated signal transducers and activators of transcription (STAT3) phosphorylation and thereby facilitating chemotherapy drug Doxorubicin‐induced apoptosis in PTC cell lines. However, the apoptosis‐promoting effect of Calcitriol and Doxorubicin co‐treatment was abrogated by STAT3 hyperphosphorylation, indicating suppression of STAT3 phosphorylation was essential for combined treatment of Calcitriol and Doxorubicin in PTC. Together, these results suggested that Calcitriol reinforced the sensitivity of PTC cells to Doxorubicin by regulating VDR/PTPN2/p‐STAT3 signalling pathway.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Liang He
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhihong Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wenwu Dong
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Qin
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Ping Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Upregulated PTPN2 induced by inflammatory response or oxidative stress stimulates the progression of thyroid cancer. Biochem Biophys Res Commun 2019; 522:21-25. [PMID: 31735335 DOI: 10.1016/j.bbrc.2019.11.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 11/20/2022]
Abstract
PTPN2 is one of the members of the protein Tyrosine Phosphatases (PTPs) family. To explore the promotive effect of upregulated PTPN2 induced by inflammatory response or oxidative stress on the progression of thyroid cancer. PTPN2 level in thyroid cancer tissues and cell lines was detected. Kaplan-Meier method was applied for evaluating the prognostic value of PTPN2 in thyroid cancer patients. After stimulation of inflammatory response (treatment of IFN-γ and TNF-α), or oxidative stress (treatment of H2O2), protein level of PTPN2 in K1 cells was measured by Western blot. Regulatory effects of PTPN2 on EdU-positive staining and Ki-67 positive cell ratio in K1 cells either with H2O2 stimulation or not were determined. PTPN2 was upregulated in thyroid cancer tissues and cell lines. Its level was higher in metastatic thyroid cancer patients than those of non-metastatic ones. High level of PTPN2 predicted worse prognosis of thyroid cancer. Treatment of either IFN-γ or TNF-α upregulated protein level of PTPN2 in K1 cells. Meanwhile, H2O2 stimulation upregulated PTPN2, which was reversed by NAC administration. With the stimulation of increased doses of H2O2, EdU-positive staining and Ki-67 positive cell ratio were dose-dependently elevated. Silence of PTPN2 attenuated proliferative ability and Ki-67 expression in K1 cells either with H2O2 stimulation or not. Inflammatory response or oxidative stress induces upregulation of PTPN2, thus promoting the progression of thyroid cancer.
Collapse
|
10
|
Veenstra C, Karlsson E, Mirwani SM, Nordenskjöld B, Fornander T, Pérez-Tenorio G, Stål O. The effects of PTPN2 loss on cell signalling and clinical outcome in relation to breast cancer subtype. J Cancer Res Clin Oncol 2019; 145:1845-1856. [PMID: 31025094 PMCID: PMC6571101 DOI: 10.1007/s00432-019-02918-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 11/28/2022]
Abstract
Purpose The protein tyrosine phosphatase PTPN2 dephosphorylates several tyrosine kinases in cancer-related signalling pathways and is thought to be a tumour suppressor. As PTPN2 is not frequently studied in breast cancer, we aimed to explore the role of PTPN2 and the effects of its loss in breast cancer. Methods Protein expression and gene copy number of PTPN2 were analysed in a cohort of pre-menopausal breast cancer patients with immunohistochemistry and droplet digital PCR, respectively. PTPN2 was knocked down in three cell lines, representing different breast cancer subtypes, with siRNA transfection. Several proteins related to PTPN2 were analysed with Western blot. Results Low PTPN2 protein expression was found in 50.2% of the tumours (110/219), gene copy loss in 15.4% (33/214). Low protein expression was associated with a higher relapse rate in patients with Luminal A and HER2-positive tumours, but not triple-negative tumours. In vitro studies further suggested a subtype-specific role of PTPN2. Knockdown of PTPN2 had no effect on the triple-negative cell line, whilst knockdown in MCF7 inhibited phosphorylation of Met and promoted that of Akt. Knockdown in SKBR3 led to increased Met phosphorylation and decreased Erk phosphorylation as well as EGF-mediated STAT3 activation. Conclusion We confirm previous studies showing that the PTPN2 protein is lost in half of the breast cancer cases and gene deletion occurs in 15–18% of the cases. Furthermore, the results suggest that the role of PTPN2 is subtype-related and should be further investigated to assess how this could affect breast cancer prognosis and treatment response.
Collapse
Affiliation(s)
- Cynthia Veenstra
- Division of Clinical Sciences, Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, 581 85, Linköping, Sweden.
| | - Elin Karlsson
- Division of Clinical Sciences, Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, 581 85, Linköping, Sweden
| | - Sanam Mirwani Mirwani
- Division of Clinical Sciences, Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, 581 85, Linköping, Sweden
| | - Bo Nordenskjöld
- Division of Clinical Sciences, Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, 581 85, Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology-Pathology, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | - Gizeh Pérez-Tenorio
- Division of Clinical Sciences, Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, 581 85, Linköping, Sweden
| | - Olle Stål
- Division of Clinical Sciences, Department of Clinical and Experimental Medicine and Department of Oncology, Faculty of Health Sciences, Linköping University, 581 85, Linköping, Sweden
| |
Collapse
|