1
|
Khade OS, Sasidharan S, Jain A, Maradani BS, Chatterjee A, Gopal D, Ravi Kumar RK, Krishnakumar S, Pandey A, Janakiraman N, Elchuri SV, Gundimeda S. Identification of dysregulation of sphingolipids in retinoblastoma using liquid chromatography-mass spectrometry. Exp Eye Res 2024; 240:109798. [PMID: 38246332 PMCID: PMC7617138 DOI: 10.1016/j.exer.2024.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Retinoblastoma (RB) is a rare ocular cancer seen in children that counts for approximately 3% of all childhood cancers. It is found that mutation in RB1, a tumour Suppressor Gene on chromosome 13 as the cause of malignancy. Retinoblastoma protein is the target for ceramide to cause apoptosis. We studied lipidomics of two RB cell lines, one aggressive cell line (NCC-RbC-51) derived from a metastatic site and one non aggressive cell line (WERI-Rb1) in comparison with a control cell line (MIO-M1). Lipid profiles of all the cell lines were studied using high resolution mass spectrometer coupled to high performance liquid chromatography. Data acquired from all the three cell lines in positive mode were analyzed to identify differentially expressed metabolites. Several phospholipids and lysophospholipids were found to be dysregulated. We observed upregulation of hexosyl ceramides, and down regulation of dihydroceramides and higher order sphingoglycolipids hinting at a hindered sphingolipid biosynthesis. The results obtained from liquid chromatography-mass spectrometry are validated by using qPCR and it was observed that genes involved in ceramide biosynthesis pathway are getting down regulated.
Collapse
Affiliation(s)
- Omkar Surendra Khade
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Sruthy Sasidharan
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Ankit Jain
- Institute of Bioinformatics, Bangalore, Karnataka, India
| | | | - Amit Chatterjee
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Divya Gopal
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Subramaniyan Krishnakumar
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India; Department of Histopathology, Radheshyam Stem Cell Biology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Akhilesh Pandey
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India; Department of Laboratory Medicine and Pathology, Centre for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Narayanan Janakiraman
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India.
| | - Seetaramanjaneyulu Gundimeda
- Institute of Bioinformatics, Bangalore, Karnataka, India; Manipal Academy of Higher Education, Mangalore, Karnataka, India.
| |
Collapse
|
2
|
Rathore S, Verma A, Ratna R, Marwa N, Ghiya Y, Honavar SG, Tiwari A, Das S, Varshney A. Retinoblastoma: A review of the molecular basis of tumor development and its clinical correlation in shaping future targeted treatment strategies. Indian J Ophthalmol 2023; 71:2662-2676. [PMID: 37417104 PMCID: PMC10491038 DOI: 10.4103/ijo.ijo_3172_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 07/08/2023] Open
Abstract
Retinoblastoma is a retinal cancer that affects children and is the most prevalent intraocular tumor worldwide. Despite tremendous breakthroughs in our understanding of the fundamental mechanisms that regulate progression of retinoblastoma, the development of targeted therapeutics for retinoblastoma has lagged. Our review highlights the current developments in the genetic, epigenetic, transcriptomic, and proteomic landscapes of retinoblastoma. We also discuss their clinical relevance and potential implications for future therapeutic development, with the aim to create a frontline multimodal therapy for retinoblastoma.
Collapse
Affiliation(s)
- Shruti Rathore
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Aman Verma
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Ria Ratna
- Ocular Genetics Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Navjot Marwa
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Yagya Ghiya
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Santosh G Honavar
- Ophthalmic Plastic Surgery, Orbit and Ocular Oncology, Centre for Sight, Hyderbad, Telangana, India
| | - Anil Tiwari
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Sima Das
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Akhil Varshney
- Ocular Oncology Services, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| |
Collapse
|