1
|
Ma Q, Chen K, Xiao H. Rapamycin combined with osimertinib alleviated non-small cell lung cancer by regulating the PARP, Akt/mTOR, and MAPK/ERK signaling pathways. Front Mol Biosci 2025; 12:1548810. [PMID: 40123978 PMCID: PMC11925885 DOI: 10.3389/fmolb.2025.1548810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Backgrounds Non-small cell lung cancer (NSCLC), one kind of common malignant tumor, is accompanied by high morbidity and mortality. The effects and related mechanisms of rapamycin (Rapa) combined with osimertinib (Osi) in treating NSCLC are still unclear. Therefore, this study aims to investigate the effects and related mechanisms of Rapa combined with Osi on NSCLC. Methods In A549 and PC-9 cells, the Cell Counting Kit-8 (CCK-8) assay was used to select the optimal administrative concentrations of Rapa and Osi and evaluate the cell viability. The Transwell assay and flow cytometry were used to determine the migration, cell cycle, apoptosis, and the level of Reactive Oxygen Species (ROS), respectively. The protein and mRNA expression level of Matrix Metalloproteinase-9 (MMP9), Caspase-3, Microtubule-Associated Protein 1 Light Chain 3 II/I (LC3 II/I), beclin1, Sequestosome 1 (p62), Poly (ADP-ribose) Polymerase (PARP), Mitogen-Activated Protein Kinase (MAPK), Extracellular Signal-Regulated Kinase (ERK), Protein Kinase B (Akt), and Mammalian Target of Rapamycin (mTOR) was determined by Western blot and Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR). Results The optimal administrative concentrations of Rapa and Osi were 0.5 μM and 1 μM, respectively. Rapamycin combined with Osimertinib significantly decreased the viability of cells, the quantity of migrated cells, the levels of ROS, as well as the mRNA and protein expression levels of MMP9 and p62, Caspase-3, LC3 II/I, beclin1. The combination of the two drugs is markedly more effective than the use of drugs alone. Conclusion In conclusion, the study demonstrated that Rapamycin combined with Osimertinib can inhibit the cell migration, regulate the cell cycle, promote the autophagy and apoptosis, increase the ROS level and regulate the PARP, MAPK/EKR, and Akt/mTOR pathways in A549 and PC-9 cells, providing a novel theoretical basis for their clinical treatment of NSCLC.
Collapse
Affiliation(s)
| | | | - Haiping Xiao
- Thoracic and Cardiac Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Tang F, Zhang JN, Zhao XL, Xu LY, Ao H, Peng C. Unlocking the dual role of autophagy: A new strategy for treating lung cancer. J Pharm Anal 2025; 15:101098. [PMID: 40104173 PMCID: PMC11919427 DOI: 10.1016/j.jpha.2024.101098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 03/20/2025] Open
Abstract
Lung cancer exhibits the highest incidence and mortality rates among cancers globally, with a five-year overall survival rate alarmingly below 20%. Targeting autophagy, though a controversial therapeutic strategy, is extensively employed in clinical practice. Current research is actively pursuing various therapeutic strategies using small molecules to exploit the dual function of autophagy. Nevertheless, the pivotal question of enhancing or inhibiting autophagy in cancer therapy merits further attention. This review aims to provide a comprehensive overview of the mechanisms of autophagy in lung cancer. It also explores recent advances in targeting cytotoxic autophagy and inhibiting protective autophagy with small molecules to induce cell death in lung cancer cells. Notably, most autophagy-targeting drugs, primarily natural small molecules, have demonstrated that activating cytotoxic autophagy effectively induces cell death in lung cancer, as opposed to inhibiting protective autophagy. These insights contribute to identifying druggable targets and drug candidates for potential autophagy-related lung cancer therapies, offering promising approaches to combat this disease.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
3
|
Chen SY, Wang CT, Huang TH, Tsai JL, Wang HT, Yen YT, Tseng YL, Wu CL, Chang JM, Shiau AL. Advancing Lung Cancer Treatment with Combined c-Met Promoter-Driven Oncolytic Adenovirus and Rapamycin. Cells 2024; 13:1597. [PMID: 39329778 PMCID: PMC11430802 DOI: 10.3390/cells13181597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Lung cancer remains a formidable health challenge due to its high mortality and morbidity rates. Non-small cell lung cancer (NSCLC) constitutes approximately 85% of all lung cancer cases, with small cell lung cancer (SCLC) accounting for the remainder. Both NSCLC and SCLC cells express receptor tyrosine kinases, which may be overexpressed or mutated in lung cancer, leading to increased activation. The c-Met receptor tyrosine kinase, crucial for cell transformation and tumor growth, invasion, and metastasis, became the focus of our study. We used an E1B55KD-deleted, replication-selective oncolytic adenovirus (Ad.What), driven by the c-Met promoter, targeting lung cancer cells with c-Met overexpression, thus sparing normal cells. Previous studies have shown the enhanced antitumor efficacy of oncolytic adenoviruses when combined with chemotherapeutic agents. We explored combining rapamycin, a selective mTOR inhibitor with promising clinical trial outcomes for various cancers, with Ad.What. This combination increased infectivity by augmenting the expression of coxsackievirus and adenovirus receptors and αV integrin on cancer cells and induced autophagy. Our findings suggest that combining a c-Met promoter-driven oncolytic adenovirus with rapamycin could be an effective lung cancer treatment strategy, offering a targeted approach to exploit lung cancer cells' vulnerabilities, potentially marking a significant advancement in managing this deadly disease.
Collapse
Affiliation(s)
- Shih-Yao Chen
- Department of Nursing, College of Nursing, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan;
| | - Chung-Teng Wang
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (C.-T.W.); (C.-L.W.)
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tang-Hsiu Huang
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Jeng-Liang Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hao-Tien Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ting Yen
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-T.Y.); (Y.-L.T.)
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-T.Y.); (Y.-L.T.)
| | - Chao-Liang Wu
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (C.-T.W.); (C.-L.W.)
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
| | - Jia-Ming Chang
- Thoracic Division, Department of Surgery, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 60002, Taiwan
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Ai-Li Shiau
- Tong Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (C.-T.W.); (C.-L.W.)
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
4
|
Tuo H, Li X, Du H, Li M, Xu C, Yu Z, Zhao H. FOLR1-stabilized β-catenin promotes laryngeal carcinoma progression through EGFR/AKT/GSK-3β pathway. Mol Carcinog 2024; 63:34-44. [PMID: 37702010 DOI: 10.1002/mc.23634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/21/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Folate receptor 1 (FOLR1) is overexpressed in numerous epithelial malignancies; however, its role in laryngeal squamous cell carcinoma (LSCC) remains unclear. In the present study, we demonstrated that FOLR1 messenger RNA and protein expression levels were higher in LSCC tissues than in the adjacent normal tissues. Additionally, FOLR1 promoted the proliferation and migration of LSCC cells, whereas small interfering RNA-mediated knockdown of β-catenin abolished these effects. Moreover, FOLR1 stabilizes β-catenin by inhibiting its ubiquitination and degradation. Furthermore, blocking the interaction between epidermal growth factor receptor (EGFR) and the EGFR/AKT/glycogen synthase (GSK)3β signaling axis both abolished FOLR1's effects on the expression and nuclear aggregation of β-catenin. In summary, our work reveals a novel mode in which FOLR1 promotes the proliferation and migration of LSCC by enhancing the stability and nuclear translocation of β-catenin through the EGFR/AKT/GSK3β axis.
Collapse
Affiliation(s)
- Huawei Tuo
- Department of Otolaryngology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xuemei Li
- Department of Dermatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Haixia Du
- Department of Otolaryngology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Man Li
- Department of Otolaryngology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chenli Xu
- Department of Pathology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| | - Zizhong Yu
- Department of Otolaryngology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Huzi Zhao
- Department of Pathology, School of Basic Medical Science, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
5
|
Liu H, Peng J, Huang L, Ruan D, Li Y, Yuan F, Tu Z, Huang K, Zhu X. The role of lysosomal peptidases in glioma immune escape: underlying mechanisms and therapeutic strategies. Front Immunol 2023; 14:1154146. [PMID: 37398678 PMCID: PMC10311646 DOI: 10.3389/fimmu.2023.1154146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Glioblastoma is the most common primary malignant tumor of the central nervous system, which has the characteristics of strong invasion, frequent recurrence, and rapid progression. These characteristics are inseparable from the evasion of glioma cells from immune killing, which makes immune escape a great obstacle to the treatment of glioma, and studies have confirmed that glioma patients with immune escape tend to have poor prognosis. The lysosomal peptidase lysosome family plays an important role in the immune escape process of glioma, which mainly includes aspartic acid cathepsin, serine cathepsin, asparagine endopeptidases, and cysteine cathepsins. Among them, the cysteine cathepsin family plays a prominent role in the immune escape of glioma. Numerous studies have confirmed that glioma immune escape mediated by lysosomal peptidases has something to do with autophagy, cell signaling pathways, immune cells, cytokines, and other mechanisms, especially lysosome organization. The relationship between protease and autophagy is more complicated, and the current research is neither complete nor in-depth. Therefore, this article reviews how lysosomal peptidases mediate the immune escape of glioma through the above mechanisms and explores the possibility of lysosomal peptidases as a target of glioma immunotherapy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jie Peng
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Linzhen Huang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Dong Ruan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yuguang Li
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Fan Yuan
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zewei Tu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Kai Huang
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affifiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Jiangxi Health Commission (JXHC) Key Laboratory of Neurological Medicine, Nanchang, China
| |
Collapse
|
6
|
Alhasan B, Mikeladze M, Guzhova I, Margulis B. Autophagy, molecular chaperones, and unfolded protein response as promoters of tumor recurrence. Cancer Metastasis Rev 2023; 42:217-254. [PMID: 36723697 DOI: 10.1007/s10555-023-10085-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Tumor recurrence is a paradoxical function of a machinery, whereby a small proportion of the cancer cell population enters a resistant, dormant state, persists long-term in this condition, and then transitions to proliferation. The dormant phenotype is typical of cancer stem cells, tumor-initiating cells, disseminated tumor cells, and drug-tolerant persisters, which all demonstrate similar or even equivalent properties. Cancer cell dormancy and its conversion to repopulation are regulated by several protein signaling systems that inhibit or induce cell proliferation and provide optimal interrelations between cancer cells and their special niche; these systems act in close connection with tumor microenvironment and immune response mechanisms. During dormancy and reawakening periods, cell proteostasis machineries, autophagy, molecular chaperones, and the unfolded protein response are recruited to protect refractory tumor cells from a wide variety of stressors and therapeutic insults. Proteostasis mechanisms functionally or even physically interfere with the main regulators of tumor relapse, and the significance of these interactions and implications in the tumor recurrence phases are discussed in this review.
Collapse
Affiliation(s)
- Bashar Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | - Marina Mikeladze
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Irina Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| | - Boris Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia
| |
Collapse
|
7
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Cao J, Huang S, Li X. Rapamycin inhibits the progression of human acute myeloid leukemia by regulating circ_0094100/miR-217/ATP1B1 axis. Exp Hematol 2022; 112-113:60-69.e2. [PMID: 35901982 DOI: 10.1016/j.exphem.2022.07.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Rapamycin has been reported to inhibit the progression of diverse tumor cells. However, the functions of rapamycin in acute myeloid leukemia (AML) are little known. Cell Counting Kit-8 (CCK-8) assay was conducted to evaluate cell viability. Flow cytometry analysis was employed to analyze cell apoptosis and cell cycle process. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to determine the levels of circRNA_0094100 (circ_0094100) and microRNA-217 (miR-217). Western blot assay was carried out to measure the protein levels of proliferating cell nuclear antigen (PCNA), cyclin D1, B-cell lymphoma-2 (Bcl-2) and ATPase Na+/K+ transporting subunit beta 1 (ATP1B1). Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify the relationship between miR-217 and circ_0094100 or ATP1B1. Rapamycin treatment suppressed AML cell viability and promoted apoptosis in a dose-dependent way. Circ_0094100 was elevated in AML tissues and cells. Moreover, the circ_0094100 level was reduced in AML cells treated with rapamycin. Circ_0094100 knockdown further inhibited rapamycin-mediated AML cell viability, and cell cycle, and promoted cell apoptosis. Circ_0094100 silencing reduced the protein levels of PCNA, cyclin D1, and Bcl-2 in rapamycin-treated AML cells. For mechanism analysis, circ_0094100 acted as the sponge for miR-217 and miR-217 inhibition reversed circ_0094100 knockdown-mediated malignant behaviors of rapamycin-treated AML cells. Furthermore, miR-217 overexpression suppressed cell viability and cell cycle and facilitated apoptosis in rapamycin-exposed AML cells, which were abolished by increasing ATP1B1. Rapamycin inhibited AML cell viability and cell cycle process and induced apoptosis through regulating circ_0094100/miR-217/ATP1B1 axis.
Collapse
Affiliation(s)
- Jiufang Cao
- Department of Hematolgy, The Second People's Hospital of Yibin City, Sichuan 644000, China
| | - Shihua Huang
- Department of Hematolgy, The Second People's Hospital of Yibin City, Sichuan 644000, China.
| | - Xiaoming Li
- Department of Hematolgy, Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
9
|
Zhong X, Long H, Su L, Zheng R, Wang W, Duan Y, Hu H, Lin M, Xie X. Radiomics models for preoperative prediction of microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis. Abdom Radiol (NY) 2022; 47:2071-2088. [PMID: 35364684 DOI: 10.1007/s00261-022-03496-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the methodological quality and to evaluate the predictive performance of radiomics studies for preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS Publications between 2017 and 2021 on radiomic MVI prediction in HCC based on CT, MR, ultrasound, and PET/CT were included. The risk of bias was assessed using the prediction model risk of bias assessment tool (PROBAST). Methodological quality was assessed through the radiomics quality score (RQS). Fourteen studies classified as TRIPOD Type 2a or above were used for meta-analysis using random-effects model. Further analyses were performed to investigate the technical factors influencing the predictive performance of radiomics models. RESULTS Twenty-three studies including 4947 patients were included. The risk of bias was mainly related to analysis domain. The RQS reached an average of (37.7 ± 11.4)% with main methodological insufficiencies of scientific study design, external validation, and open science. The pooled areas under the receiver operating curve (AUC) were 0.85 (95% CI 0.82-0.89), 0.87 (95% CI 0.83-0.92), and 0.74 (95% CI 0.67-0.80), respectively, for CT, MR, and ultrasound radiomics models. The pooled AUC of ultrasound radiomics model was significantly lower than that of CT (p = 0.002) and MR (p < 0.001). Portal venous phase for CT and hepatobiliary phase for MR were superior to other imaging sequences for radiomic MVI prediction. Segmentation of both tumor and peritumor regions showed better performance than tumor region. CONCLUSION Radiomics models show promising prediction performance for predicting MVI in HCC. However, improvements in standardization of methodology are required for feasibility confirmation and clinical translation.
Collapse
Affiliation(s)
- Xian Zhong
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Haiyi Long
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liya Su
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ruiying Zheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu Duan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hangtong Hu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Manxia Lin
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Zhuang J, Chen Z, Chen Z, Chen J, Liu M, Xu X, Liu Y, Yang S, Hu Z, He F. Construction of an immune-related lncRNA signature pair for predicting oncologic outcomes and the sensitivity of immunosuppressor in treatment of lung adenocarcinoma. Respir Res 2022; 23:123. [PMID: 35562727 PMCID: PMC9101821 DOI: 10.1186/s12931-022-02043-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Although immunotherapy has shown clinical activity in lung adenocarcinoma (LUAD), LUAD prognosis has been a perplexing problem. We aimed to construct an immune-related lncRNA pairs (IRLPs) score for LUAD and identify what immunosuppressor are appropriate for which group of people with LUAD. Methods Based on The Cancer Genome Atlas (TCGA)-LUAD cohort, IRLPs were identified to construct an IRLPs scoring system by Cox regression and validated in the Gene Expression Omnibus (GEO) dataset using log-rank test and the receiver operating characteristic curve (ROC). Next, we used spearman’s correlation analysis, t-test, signaling pathways analysis and gene mutation analysis to explore immune and molecular characteristics in different IRLP subgroups. The “pRRophetic” package was used to predict the sensitivity of immunosuppressant. Results The IRLPs score was constructed based on eight IRLPs calculated as 2.12 × (MIR31HG|RRN3P2) + 0.43 × (NKX2-1-AS1|AC083949.1) + 1.79 × (TMPO-AS1|LPP-AS2) + 1.60 × (TMPO-AS1|MGC32805) + 1.79 × (TMPO-AS1|PINK1-AS) + 0.65 × (SH3BP5-AS1|LINC01137) + 0.51 × (LINC01004|SH3PXD2A-AS1) + 0.62 × (LINC00339|AGAP2-AS1). Patients with a lower IRLPs risk score had a better overall survival (OS) (Log-rank test PTCGA train dataset < 0.001, PTCGA test dataset = 0.017, PGEO dataset = 0.027) and similar results were observed in the AUCs of TCGA dataset and GEO dataset (AUC TCGA train dataset = 0.777, AUC TCGA test dataset = 0.685, AUC TCGA total dataset = 0.733, AUC GEO dataset = 0.680). Immune score (Cor = -0.18893, P < 0.001), stoma score (Cor = -0.24804, P < 0.001), and microenvironment score (Cor = -0.22338, P < 0.001) were significantly decreased in the patients with the higher IRLP risk score. The gene set enrichment analysis found that high-risk group enriched in molecular changes in DNA and chromosomes signaling pathways, and in this group the tumor mutation burden (TMB) was higher than in the low-risk group (P = 0.0015). Immunosuppressor methotrexate sensitivity was higher in the high-risk group (P = 0.0052), whereas parthenolide (P < 0.001) and rapamycin (P = 0.013) sensitivity were lower in the high-risk group. Conclusions Our study established an IRLPs scoring system as a biomarker to help in the prognosis, the identification of molecular and immune characteristics, and the patient-tailored selection of the most suitable immunosuppressor for LUAD therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02043-4.
Collapse
Affiliation(s)
- Jinman Zhuang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Zhongwu Chen
- Department of Interventional Therapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zishan Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Jin Chen
- Department of Interventional Therapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Maolin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Xinying Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Yuhang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Shuyan Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Digital Tumor Data Research Center, Fuzhou, China
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China. .,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China. .,Fujian Digital Tumor Data Research Center, Fuzhou, China.
| | - Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China. .,Fujian Provincial Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China. .,Fujian Digital Tumor Data Research Center, Fuzhou, China.
| |
Collapse
|
11
|
Chen Z, Liu S, Xie P, Zhang B, Yu M, Yan J, Jin L, Zhang W, Zhou B, Li X, Xiao Y, Xu Y, Ye Q, Li H, Guo L. Tumor-derived PD1 and PD-L1 could promote hepatocellular carcinoma growth through autophagy induction in vitro. Biochem Biophys Res Commun 2022; 605:82-89. [DOI: 10.1016/j.bbrc.2022.03.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/09/2023]
|
12
|
Icariside II attenuates vascular remodeling via Wnt7b/CCND1 axis. J Cardiovasc Pharmacol 2022; 80:48-55. [PMID: 35170494 DOI: 10.1097/fjc.0000000000001239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Angioplasty often fails due to the abnormal proliferation of vascular smooth muscle cells (VSMCs). Success rates of angioplasty may increase following the administration of an agent that effectively ameliorates aberrant vascular remodeling. Icariside II(ICS-II) is a natural flavonol glycoside extract from the Chinese herbal medicine Epimedii that possesses several medicinal qualities that are beneficial in humans. Nevertheless, the role of ICS-II in addressing aberrant vascular remodeling have yet to be clarified. The current investigation studies the molecular effects of ICS-II on balloon-inflicted neointimal hyperplasia in rats in vivo and on platelet-derived growth factor (PDGF)-induced vascular proliferation in primary rat aortic smooth muscle cells (VSMCs) in vitro. ICS-II was found to be as effective as rapamycin, the positive control used in this study. ICS-II inhibited neointimal formation in injured rat carotid arteries and notably reduced the expression of Wnt7b. ICS-II significantly counteracted PDGF-induced VSMCs proliferation. Cell cycle analysis showed that ICS-II triggered cell cycle arrest during the G1/S transition. Western blot analysis further indicated that this cell cycle arrest was likely through Wnt7b suppression that led to CCND1 inhibition. In conclusion, our findings demonstrate that ICS-II possesses significant anti-proliferative qualities that counteracts aberrant vascular neointimal hyperplasia. This phenomenon most likely occurs due to suppression of the Wnt7b/CCND1 axis.
Collapse
|
13
|
Wang Y, Du J, Wu X, Abdelrehem A, Ren Y, Liu C, Zhou X, Wang S. Crosstalk between autophagy and microbiota in cancer progression. Mol Cancer 2021; 20:163. [PMID: 34895252 PMCID: PMC8665582 DOI: 10.1186/s12943-021-01461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved catabolic process seen in eukaryotes and is essentially a lysosome-dependent protein degradation pathway. The dysregulation of autophagy is often associated with the pathogenesis of numerous types of cancers, and can not only promote the survival of cancer but also trigger the tumor cell death. During cancer development, the microbial community might predispose cells to tumorigenesis by promoting mucosal inflammation, causing systemic disorders, and may also regulate the immune response to cancer. The complex relationship between autophagy and microorganisms can protect the body by activating the immune system. In addition, autophagy and microorganisms can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses involved in cancer progression. Various molecular mechanisms, correlating the microbiota disorders and autophagy activation, control the outcomes of protumor or antitumor responses, which depend on the cancer type, tumor microenvironment and disease stage. In this review, we mainly emphasize the leading role of autophagy during the interaction between pathogenic microorganisms and human cancers and investigate the various molecular mechanisms by which autophagy modulates such complicated biological processes. Moreover, we also highlight the possibility of curing cancers with multiple molecular agents targeting the microbiota/autophagy axis. Finally, we summarize the emerging clinical trials investigating the therapeutic potential of targeting either autophagy or microbiota as anticancer strategies, although the crosstalk between them has not been explored thoroughly.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Jiang Du
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| | - Ahmed Abdelrehem
- Department of Craniomaxillofacial and Plastic Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070 China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| |
Collapse
|
14
|
Nounu A, Walker V, Richmond RC. Letter regarding, "Association between the use of aspirin and risk of lung cancer: results from pooled cohorts and Mendelian randomization analyses". J Cancer Res Clin Oncol 2021; 147:2171-2173. [PMID: 33433658 DOI: 10.1007/s00432-020-03508-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Aayah Nounu
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK.
| | - Venexia Walker
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Rebecca C Richmond
- Medical Research Council (MRC) Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
15
|
Further discussion on the association between desmoglein 2 and tumor size of non-small cell lung cancer. J Cancer Res Clin Oncol 2020; 147:633-635. [PMID: 33222013 DOI: 10.1007/s00432-020-03465-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023]
Abstract
We have read the article by Cai et al. and find there is a discrepancy between their data and conclusion. Their statement, "Specifically, DSG2 expression was associated with tumor size", is not supported by their own clinicopathological data and analysis. After reviewing some similar articles, we also found no available evidence showed a statistically significant association between them. Therefore, we would like to suggest Cai et al. to rectify the results they published.
Collapse
|