1
|
Lee S, Sfanos K, Singla N. The role of the urinary microbiome in genitourinary cancers. Nat Rev Urol 2025:10.1038/s41585-025-01011-z. [PMID: 40082677 DOI: 10.1038/s41585-025-01011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
Genitourinary cancers account for 20% of cancer instances globally and pose a substantial burden. The microbiome, defined as the ecosystem of organisms that reside within and on the human body, seems to be closely related to multiple cancers. Research on the gut microbiome has yielded substantial insights into the interactions of this entity with the immune system and cancer therapeutic efficacy, whereas the urinary microbiome has been relatively less well-studied. Advances in next-generation sequencing technologies led to new discoveries in the urinary microbiome, which might aid in early detection, risk stratification and personalized treatment strategies in genitourinary cancers. Mechanistic investigations have also suggested a role for the urinary microbiome in modulating the tumour microenvironment and host immune response. For example, distinct urinary microbial signatures have been linked to bladder cancer occurrence and recurrence risk, with specific taxa associated with cytokine production and inflammation. Urinary microbiome signatures have also been explored as potential biomarkers for non-invasive cancer detection. However, challenges remain in standardizing methodologies, validating findings across studies, and establishing causative mechanisms. As investigations into the urinary microbiome continue to evolve, so does the potential for developing microbiome-modulating therapies and enhancing diagnostic capabilities to improve outcomes in patients with genitourinary cancers.
Collapse
Affiliation(s)
- Seoho Lee
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Urology, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirmish Singla
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
- Department of Urology, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Ece G, Aktaş A, Caner A, Sağlık İ, Kula Atik T, Ulusan Bağcı Ö, Bayındır Bilman F, Demirbakan H, Güdül Havuz S, Kaya E, Koyuncu Özyurt Ö, Yetkin G, Zorbozan O. The Urogenital System Microbiota: Is It a New Gamechanger in Urogenital Cancers? Microorganisms 2025; 13:315. [PMID: 40005682 PMCID: PMC11858393 DOI: 10.3390/microorganisms13020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The human microbiome, which encompasses microbial communities and their genetic material, significantly influences health and disease, including cancer. The urogenital microbiota, naturally present in the urinary and genital tracts, interact with factors such as age, lifestyle, and health conditions to affect homeostasis and carcinogenesis. Studies suggest that alterations in this microbiota contribute to the development and progression of genitourinary cancers, emphasizing the concept of oncobiome, which refers to microbial genetic contributions to cancer. Similarly, gut microbiota can influence hormone levels and systemic inflammation, impacting cancers such as cervical and prostate cancer. Advanced studies indicate that microbial communities in genitourinary cancers have distinct profiles that may serve as diagnostic biomarkers or therapeutic targets. Dysbiosis of the urinary microbiota correlates with bladder and kidney cancer. Additionally, gut microbiota influence the effectiveness of cancer treatments. However, further research is necessary to clarify causality, the role of microbial metabolites, and hormonal regulation. The aim of this review is to understand that these dynamics present opportunities for innovative cancer diagnostics and therapies, highlighting the need for integration of microbiology, oncology, and genomics to explore the role of microbiota in genitourinary cancers. For this, a comprehensive search of relevant databases was conducted, applying specific inclusion and exclusion criteria to identify studies examining the association between microbiota and urogenital cancers. Research into the mechanisms by which microbiota influence urogenital cancers may pave the way for new diagnostic and therapeutic approaches, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Gülfem Ece
- Department of Medical Microbiology, İzmir City Hospital, İzmir 35540, Türkiye; (G.E.); (F.B.B.)
| | - Ahmet Aktaş
- İstanbul Provincial Health Directorate, Istanbul Public Health Laboratory No. 2, İstanbul 34524, Türkiye;
| | - Ayse Caner
- Department of Parasitology, Faculty of Medicine, Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir 35100, Türkiye
| | - İmran Sağlık
- Department of Medical Microbiology, Faculty of Medicine, Uludag University, Bursa 16059, Türkiye;
| | - Tuğba Kula Atik
- Department of Microbiology, Faculty of Medicine, Balıkesir University, Balıkesir 10145, Türkiye;
| | - Özlem Ulusan Bağcı
- Department of Parasitology, Faculty of Medicine, Ankara University, Ankara 06230, Türkiye;
| | - Fulya Bayındır Bilman
- Department of Medical Microbiology, İzmir City Hospital, İzmir 35540, Türkiye; (G.E.); (F.B.B.)
| | - Hadiye Demirbakan
- Department of Medical Microbiology, Faculty of Medicine, Sanko University, Gaziantep 27090, Türkiye;
| | - Seda Güdül Havuz
- Samsun Provincial Health Directorate, Samsun Bafra State Hospital, Department of Medical Microbiology, Samsun 55400, Türkiye;
| | - Esra Kaya
- Department of Medical Microbiology, Kahramanmaraş Necip Fazıl City Hospital, Kahramanmaraş 46100, Türkiye;
| | - Özlem Koyuncu Özyurt
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz Univertsity, Antalya 07070, Türkiye;
| | - Gülay Yetkin
- Bakırköy Dr Sadi Konuk Education and Research Hospital, Hamidiye Faculty of Medicine, Health Science University, İstanbul 34140, Türkiye;
| | - Orçun Zorbozan
- Department of Medical Microbiology, Faculty of Medicine, Bakircay University, İzmir 35665, Türkiye;
| |
Collapse
|
3
|
Zou J, Xu B, Gao H, Luo P, Chen T, Duan H. Microbiome in urologic neoplasms: focusing on tumor immunity. Front Immunol 2024; 15:1507355. [PMID: 39703512 PMCID: PMC11655508 DOI: 10.3389/fimmu.2024.1507355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024] Open
Abstract
Urological tumors are an important disease affecting global human health, and their pathogenesis and treatment have been the focus of medical research. With the in - depth study of microbiomics, the role of the microbiome in urological tumors has gradually attracted attention. However, the current research on tumor - associated microorganisms mostly focuses on one type or one site, and currently, there is a lack of attention to the microbiome in the immunity and immunotherapy of urological tumors. Therefore, in this paper, we systematically review the distribution characteristics of the microbiome (including microorganisms in the gut, urine, and tumor tissues) in urologic tumors, the relationship with disease prognosis, and the potential mechanisms of microbial roles in immunotherapy. In particular, we focus on the molecular mechanisms by which the microbiome at different sites influences tumor immunity through multiple "messengers" and pathways. We aim to further deepen the understanding of microbiome mechanisms in urologic tumors, and also point out the direction for the future development of immunotherapy for urologic tumors.
Collapse
Affiliation(s)
- Jun Zou
- Department of Otorhinolaryngology, The Affiliated Fengcheng Hospital of Yichun University, Fengcheng, Jiangxi, China
| | - Baisheng Xu
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| | - Hongbing Gao
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huanglin Duan
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| |
Collapse
|
4
|
Guo C, An Q, Zhang L, Wei X, Xu J, Yu J, Wu G, Ma J. Intratumoral microbiota as cancer therapeutic target. Aging Med (Milton) 2024; 7:636-644. [PMID: 39507228 PMCID: PMC11535161 DOI: 10.1002/agm2.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Intratumoral microbiota, which affects the physiological and pathological processes of the host, has attracted increasing attention from researchers. Microbials have been found in normal as well as tumor tissues that were originally thought to be sterile. Intratumoral microbiota is considered to play a significant role in the development of tumors and the reduction of clinical benefits. In addition, intratumoral microbiota are heterogeneous, which have different distribution in various types of tumors, and can influence tumor development through different mechanisms, including genome mutations, inflammatory responses, activated cancer pathways, and immunosuppressive microenvironments. Therefore, eliminating the intratumoral microbiota is considered one of the most promising ways to slow down the tumor progression and improve therapeutic outcomes. In this review, we systematically categorized the intratumoral microbiota and elucidated its role in the pathogenesis and therapeutic response of cancer. We have also described the novel strategies to mitigate the impact of tumor progression. We hope this review will provide new insights for the anti-tumor treatment, particularly for the elderly population, where such insights could significantly enhance treatment outcomes.
Collapse
Affiliation(s)
- Chang Guo
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Qi An
- General Surgery Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Lu‐yao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Xun‐dong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jing Xu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jiang‐yong Yu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Guo‐ju Wu
- General Surgery Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| |
Collapse
|
5
|
Shi Z, Li Z, Zhang M. Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies. J Transl Med 2024; 22:837. [PMID: 39261861 PMCID: PMC11391643 DOI: 10.1186/s12967-024-05640-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
The intricate interplay between the host and its microbiota has garnered increasing attention in the past decade. Specifically, the emerging recognition of microorganisms within diverse cancer tissues, previously presumed sterile, has ignited a resurgence of enthusiasm and research endeavors. Four potential migratory routes have been identified as the sources of intratumoral microbial "dark matter," including direct invasion of mucosal barriers, spreading from normal adjacent tissue, hematogenous spread, and lymphatic drainage, which contribute to the highly heterogeneous features of intratumor microbiota. Importantly, multitudes of studies delineated the roles of intratumor microbiota in cancer initiation and progression, elucidating underlying mechanisms such as genetic alterations, epigenetic modifications, immune dysfunctions, activating oncogenic pathways, and inducing metastasis. With the deepening understanding of intratumoral microbial composition, novel microbiota-based strategies for early cancer diagnosis and prognostic stratification continue to emerge. Furthermore, intratumor microbiota exerts significant influence on the efficacy of cancer therapeutics, particularly immunotherapy, making it an enticing target for intervention in cancer treatment. In this review, we present a comprehensive discussion of the current understanding pertaining to the developmental history, heterogeneous profiles, underlying originations, and carcinogenic mechanisms of intratumor microbiota, and uncover its potential predictive and intervention values, as well as several inevitable challenges as a target for personalized cancer management strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, 450000, China.
| |
Collapse
|
6
|
Peng F, Hu M, Su Z, Hu L, Guo L, Yang K. Intratumoral Microbiota as a Target for Advanced Cancer Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405331. [PMID: 39054925 DOI: 10.1002/adma.202405331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Indexed: 07/27/2024]
Abstract
In recent years, advancements in microbial sequencing technology have sparked an increasing interest in the bacteria residing within solid tumors and its distribution and functions in various tumors. Intratumoral bacteria critically modulate tumor oncogenesis and development through DNA damage induction, chronic inflammation, epigenetic alterations, and metabolic and immune regulation, while also influencing cancer treatment efficacy by affecting drug metabolism. In response to these discoveries, a variety of anti-cancer therapies targeting these microorganisms have emerged. These approaches encompass oncolytic therapy utilizing tumor-associated bacteria, the design of biomaterials based on intratumoral bacteria, the use of intratumoral bacterial components for drug delivery systems, and comprehensive strategies aimed at the eradication of tumor-promoting bacteria. Herein, this review article summarizes the distribution patterns of bacteria in different solid tumors, examines their impact on tumors, and evaluates current therapeutic strategies centered on tumor-associated bacteria. Furthermore, the challenges and prospects for developing drugs that target these bacterial communities are also explored, promising new directions for cancer treatment.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mengyuan Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyue Su
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lingchuan Guo
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Kai Yang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
- Key Laboratory of Alkene-carbon Fibres-based Technology & Application for Detection of Major Infectious Diseases, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
7
|
Wu B, Quan C, He Y, Matsika J, Huang J, Liu B, Chen J. Targeting gut and intratumoral microbiota: a novel strategy to improve therapy resistance in cancer with a focus on urologic tumors. Expert Opin Biol Ther 2024; 24:747-759. [PMID: 38910461 DOI: 10.1080/14712598.2024.2371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Growing attention has been drawn to urologic tumors due to their rising incidence and suboptimal clinical treatment outcomes. Cancer therapy resistance poses a significant challenge in clinical oncology, limiting the efficacy of conventional treatments and contributing to disease progression. Recent research has unveiled a complex interplay between the host microbiota and cancer cells, highlighting the role of the microbiota in modulating therapeutic responses. AREAS COVERED We used the PubMed and Web of Science search engines to identify key publications in the fields of tumor progression and urologic tumor treatment, specifically focusing on the role of the microbiota. In this review, we summarize the current literature on how microbiota influence the tumor microenvironment and anti-tumor immunity, as well as their impact on treatments for urinary system malignancies, highlighting promising future applications. EXPERT OPINION We explore how the composition and function of the gut microbiota influence the tumor microenvironment and immune response, ultimately impacting treatment outcomes. Additionally, we discuss emerging strategies targeting the microbiota to enhance therapeutic efficacy and overcome resistance. The application of antibiotics, fecal microbiota transplantation, and oncolytic bacteria has improved tumor treatment outcomes, which provides a novel insight into developing therapeutic strategies for urologic cancer.
Collapse
Affiliation(s)
- Bingquan Wu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chao Quan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunbo He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juliet Matsika
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinliang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bolong Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Kyriazi AA, Karaglani M, Agelaki S, Baritaki S. Intratumoral Microbiome: Foe or Friend in Reshaping the Tumor Microenvironment Landscape? Cells 2024; 13:1279. [PMID: 39120310 PMCID: PMC11312414 DOI: 10.3390/cells13151279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The role of the microbiome in cancer and its crosstalk with the tumor microenvironment (TME) has been extensively studied and characterized. An emerging field in the cancer microbiome research is the concept of the intratumoral microbiome, which refers to the microbiome residing within the tumor. This microbiome primarily originates from the local microbiome of the tumor-bearing tissue or from translocating microbiome from distant sites, such as the gut. Despite the increasing number of studies on intratumoral microbiome, it remains unclear whether it is a driver or a bystander of oncogenesis and tumor progression. This review aims to elucidate the intricate role of the intratumoral microbiome in tumor development by exploring its effects on reshaping the multileveled ecosystem in which tumors thrive, the TME. To dissect the complexity and the multitude of layers within the TME, we distinguish six specialized tumor microenvironments, namely, the immune, metabolic, hypoxic, acidic, mechanical and innervated microenvironments. Accordingly, we attempt to decipher the effects of the intratumoral microbiome on each specialized microenvironment and ultimately decode its tumor-promoting or tumor-suppressive impact. Additionally, we portray the intratumoral microbiome as an orchestrator in the tumor milieu, fine-tuning the responses in distinct, specialized microenvironments and remodeling the TME in a multileveled and multifaceted manner.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Laboratory of Hygiene and Environmental Protection, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
9
|
Fang X, Tong W, Wu S, Zhu Z, Zhu J. The role of intratumoral microorganisms in the progression and immunotherapeutic efficacy of head and neck cancer. ONCOLOGIE 2024; 26:349-360. [DOI: 10.1515/oncologie-2023-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
The effectiveness of cancer immunization is largely dependent on the tumor’s microenvironment, especially the tumor immune microenvironment. Emerging studies say microbes exist in tumor cells and immune cells, suggesting that these microbes can affect the state of the immune microenvironment of the tumor. Our comprehensive review navigates the intricate nexus between intratumoral microorganisms and their role in tumor biology and immune modulation. Beginning with an exploration of the historical acknowledgment of microorganisms within tumors, the article underscores the evolution of the tumor microenvironment (TME) and its subsequent implications. Using findings from recent studies, we delve into the unique bacterial compositions across different tumor types and their influence on tumor growth, DNA damage, and immune regulation. Furthermore, we illuminate the potential therapeutic implications of targeting these intratumoral microorganisms, emphasizing their multifaceted roles from drug delivery agents to immunotherapy enhancers. As advancements in next-generation sequencing (NGS) technology redefine our understanding of the tumor microbiome, the article underscores the importance of discerning their precise role in tumor progression and tailoring therapeutic interventions. The review culminates by emphasizing ongoing challenges and the pressing need for further research to harness the potential of intratumoral microorganisms in cancer care.
Collapse
Affiliation(s)
- Xuzhe Fang
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Weihong Tong
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Sheng Wu
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Zhengyong Zhu
- The Fourth School of Clinical Medicine , Zhejiang Chinese Medical University , Hangzhou , China
| | - Jin Zhu
- Department of Otorhinolaryngology and Head Neck Surgery, Affiliated Hangzhou First People’s Hospital , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
10
|
Kovaleva O, Podlesnaya P, Gratchev A. Resident Microbiome of Kidney Tumors. Oncol Rev 2024; 18:1393664. [PMID: 38835643 PMCID: PMC11148557 DOI: 10.3389/or.2024.1393664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Emerging research has uncovered the significance of microbiota in carcinogenesis, with specific bacterial infectious agents linked to around 15% of malignant tumors. This review is focused on the resident kidney microbiome, its composition, and alterations in various diseases. Recent studies have shown that bacteria can infiltrate the kidney, with differences between normal and tumor tissue. These studies have identified distinctive microorganisms unique to both conditions, hinting at their potential clinical relevance. Research into the kidney microbiome diversity reveals differences in tumor tissue, with specific taxa associated with different histological types. Notably, the alpha diversity indices suggest variations in bacterial content between tumor and normal tissue, offering insights into potential diagnostic and prognostic use of these markers. Better studied is the impact of the gut microbiome on therapy efficacy in malignant kidney tumors. Antibiotics, which can alter the gut microbiome, have been linked to survival outcomes in patients receiving targeted therapy and immunotherapy. The findings suggest that the uncontrolled use of antibiotics may not only contribute to bacterial resistance but also disrupt the normal microbiome, potentially influencing the development of oncological diseases. In-depth investigation into the resident kidney microbiome is essential for addressing fundamental and practical aspects of kidney tumor development.
Collapse
Affiliation(s)
- Olga Kovaleva
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Polina Podlesnaya
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Alexei Gratchev
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
11
|
Wu K, Li Y, Ma K, Zhao W, Yao Z, Zheng Z, Sun F, Mu X, Liu Z, Zheng J. The microbiota and renal cell carcinoma. Cell Oncol (Dordr) 2024; 47:397-413. [PMID: 37878209 DOI: 10.1007/s13402-023-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/26/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for about 2% of cancer diagnoses and deaths worldwide. Recent studies emphasized the critical involvement of microbial populations in RCC from oncogenesis, tumor growth, and response to anticancer therapy. Microorganisms have been shown to be involved in various renal physiological and pathological processes by influencing the immune system function, metabolism of the host and pharmaceutical reactions. These findings have extended our understanding and provided more possibilities for the diagnostic or therapeutic development of microbiota, which could function as screening, prognostic, and predictive biomarkers, or be manipulated to prevent RCC progression, boost anticancer drug efficacy and lessen the side effects of therapy. This review aims to present an overview of the roles of microbiota in RCC, including pertinent mechanisms in microbiota-related carcinogenesis, the potential use of the microbiota as RCC biomarkers, and the possibility of modifying the microbiota for RCC prevention or treatment. According to these scientific findings, the clinical translation of microbiota is expected to improve the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaorong Li
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangli Ma
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguang Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixian Yao
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong Zheng
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Sun
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Junhua Zheng
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Sun J, Xie Q, Sun M, Zhang W, Wang H, Liu N, Wang M. Curcumin protects mice with myasthenia gravis by regulating the gut microbiota, short-chain fatty acids, and the Th17/Treg balance. Heliyon 2024; 10:e26030. [PMID: 38420408 PMCID: PMC10900935 DOI: 10.1016/j.heliyon.2024.e26030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Curcumin is widely used as a traditional drug in Asia. Interestingly, curcumin and its metabolites have been demonstrated to influence the microbiota. However, the effect of curcumin on the gut microbiota in patients with myasthenia gravis (MG) remains unclear. This study aimed to investigate the effects of curcumin on the gut microbiota community, short-chain fatty acids (SCFAs) levels, intestinal permeability, and Th17/Treg balance in a Torpedo acetylcholine receptor (T-AChR)-induced MG mouse model. The results showed that curcumin significantly alleviated the clinical symptoms of MG mice induced by T-AChR. Curcumin modified the gut microbiota composition, increased microbial diversity, and, in particular, reduced endotoxin-producing Proteobacteria and Desulfovibrio levels in T-AChR-induced gut dysbiosis. Moreover, we found that curcumin significantly increased fecal butyrate levels in mice with T-AChR-induced gut dysbiosis. Butyrate levels increased in conjunction with the increase in butyrate-producing species such as Oscillospira, Akkermansia, and Allobaculum in the curcumin-treated group. In addition, curcumin repressed the increased levels of lipopolysaccharide (LPS), zonulin, and FD4 in plasma. It enhanced Occludin expression in the colons of MG mice induced with T-AChR, indicating dramatically alleviated gut permeability. Furthermore, curcumin treatment corrected T-AChR-induced imbalances in Th17/Treg cells. In summary, curcumin may protect mice against myasthenia gravis by modulating both the gut microbiota and SCFAs, improving gut permeability, and regulating the Th17/Treg balance. This study provides novel insights into curcumin's clinical value in MG therapy.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Qinfang Xie
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Mengjiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Wenjing Zhang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, China
| | - Hongxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Ning Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| |
Collapse
|
13
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
14
|
Meng YF, Fan ZY, Zhou B, Zhan HX. Role of the intratumoral microbiome in tumor progression and therapeutics implications. Biochim Biophys Acta Rev Cancer 2023; 1878:189014. [PMID: 37918451 DOI: 10.1016/j.bbcan.2023.189014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Microbes are widely present in various organs of the human body and play important roles in numerous physiological and pathological processes. Nevertheless, owing to multiple limiting factors, such as contamination and low biomass, the current understanding of the intratumoral microbiome is limited. The intratumoral microbiome exerts tumor-promoting or tumor-suppressive effects by engaging in metabolic reactions within the body, regulating signaling cancer-related pathways, and impacting both host cells function and immune system. It is important to emphasize that intratumoral microbes exhibit substantial heterogeneity in terms of composition and abundance across various tumor types, thereby potentially influencing diverse aspects of tumorigenesis, progression, and metastasis. These findings suggest that intratumoral microbiome have great potential as diagnostic and prognostic biomarkers. By manipulating the intratumoral microbes to employ cancer therapy, the efficacy of chemotherapy or immunotherapy can be enhanced while minimizing adverse effects. In this review, we comprehensively describe the composition and function of the intratumoral microbiome in various human solid tumors. Combining recent advancements in research, we discuss the origins, mechanisms, and prospects of the clinical applications of intratumoral microbiome.
Collapse
Affiliation(s)
- Yu-Fan Meng
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Zhi-Yao Fan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Department of Retroperitoneal Tumor Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Han-Xiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
15
|
Porto JG, Arbelaez MCS, Pena B, Khandekar A, Malpani A, Nahar B, Punnen S, Ritch CR, Gonzalgo ML, Parekh DJ, Marcovich R, Shah HN. The Influence of the Microbiome on Urological Malignancies: A Systematic Review. Cancers (Basel) 2023; 15:4984. [PMID: 37894351 PMCID: PMC10605095 DOI: 10.3390/cancers15204984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The microbiome, once considered peripheral, is emerging as a relevant player in the intricate web of factors contributing to cancer development and progression. These often overlooked microorganisms, in the context of urological malignancies, have been investigated primarily focusing on the gut microbiome, while exploration of urogenital microorganisms remains limited. Considering this, our systematic review delves into the complex role of these understudied actors in various neoplastic conditions, including prostate, bladder, kidney, penile, and testicular cancers. Our analysis found a total of 37 studies (prostate cancer 12, bladder cancer 20, kidney cancer 4, penile/testicular cancer 1), revealing distinct associations specific to each condition and hinting at potential therapeutic avenues and future biomarker discoveries. It becomes evident that further research is imperative to unravel the complexities of this domain and provide a more comprehensive understanding.
Collapse
Affiliation(s)
- Joao G. Porto
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | | | - Brandon Pena
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
- Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Archan Khandekar
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Ankur Malpani
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Bruno Nahar
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Sanoj Punnen
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Chad R. Ritch
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Mark L. Gonzalgo
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Dipen J. Parekh
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Robert Marcovich
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Hemendra N. Shah
- Desai Sethi Urology Institute, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
16
|
Saxami G, Kerezoudi EN, Eliopoulos C, Arapoglou D, Kyriacou A. The Gut-Organ Axis within the Human Body: Gut Dysbiosis and the Role of Prebiotics. Life (Basel) 2023; 13:2023. [PMID: 37895405 PMCID: PMC10608660 DOI: 10.3390/life13102023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The human gut microbiota (GM) is a complex microbial ecosystem that colonises the gastrointestinal tract (GIT) and is comprised of bacteria, viruses, fungi, and protozoa. The GM has a symbiotic relationship with its host that is fundamental for body homeostasis. The GM is not limited to the scope of the GIT, but there are bidirectional interactions between the GM and other organs, highlighting the concept of the "gut-organ axis". Any deviation from the normal composition of the GM, termed "microbial dysbiosis", is implicated in the pathogenesis of various diseases. Only a few studies have demonstrated a relationship between GM modifications and disease phenotypes, and it is still unknown whether an altered GM contributes to a disease or simply reflects its status. Restoration of the GM with probiotics and prebiotics has been postulated, but evidence for the effects of prebiotics is limited. Prebiotics are substrates that are "selectively utilized by host microorganisms, conferring a health benefit". This study highlights the bidirectional relationship between the gut and vital human organs and demonstrates the relationship between GM dysbiosis and the emergence of certain representative diseases. Finally, this article focuses on the potential of prebiotics as a target therapy to manipulate the GM and presents the gaps in the literature and research.
Collapse
Affiliation(s)
- Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| | - Evangelia N. Kerezoudi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—Demeter, L. Sof. Venizelou 1, 14123 Lykovryssi, Greece; (C.E.); (D.A.)
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.N.K.); (A.K.)
| |
Collapse
|
17
|
Wang M, Yu F, Li P. Intratumor microbiota in cancer pathogenesis and immunity: from mechanisms of action to therapeutic opportunities. Front Immunol 2023; 14:1269054. [PMID: 37868956 PMCID: PMC10587687 DOI: 10.3389/fimmu.2023.1269054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Microbial species that dwell human bodies have profound effects on overall health and multiple pathological conditions. The tumor microenvironment (TME) is characterized by disordered vasculature, hypoxia, excessive nutrition and immunosuppression. Thus, it is a favorable niche for microbial survival and growth. Multiple lines of evidence support the existence of microorganisms within diverse types of cancers. Like gut microbiota, intratumoral microbes have been tightly associated with cancer pathogenesis. Intratumoral microbiota can affect cancer development through various mechanisms, including induction of host genetic mutation, remodeling of the immune landscape and regulation of cancer metabolism and oncogenic pathways. Tumor-associated microbes modulate the efficacy of anticancer therapies, suggesting their potential utility as novel targets for future intervention. In addition, a growing body of evidence has manifested the diagnostic, prognostic, and therapeutic potential of intratumoral microorganisms in cancer. Nevertheless, our knowledge of the diversity and biological function of intratumoral microbiota is still incomplete. A deeper appreciation of tumor microbiome will be crucial to delineate the key pathological mechanisms underlying cancer progression and hasten the development of personalized treatment approaches. Herein, we summarize the most recent progress of the research into the emerging roles of intratumoral microbiota in cancer and towards clarifying the sophisticated mechanisms involved. Moreover, we discuss the effect of intratumoral microbiota on cancer treatment response and highlight its potential clinical implications in cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Jiang M, Yang Z, Dai J, Wu T, Jiao Z, Yu Y, Ning K, Chen W, Yang A. Intratumor microbiome: selective colonization in the tumor microenvironment and a vital regulator of tumor biology. MedComm (Beijing) 2023; 4:e376. [PMID: 37771912 PMCID: PMC10522974 DOI: 10.1002/mco2.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The polymorphic microbiome has been proposed as a new hallmark of cancer. Intratumor microbiome has been revealed to play vital roles in regulating tumor initiation and progression, but the regulatory mechanisms have not been fully uncovered. In this review, we illustrated that similar to other components in the tumor microenvironment, the reside and composition of intratumor microbiome are regulated by tumor cells and the surrounding microenvironment. The intratumor hypoxic, immune suppressive, and highly permeable microenvironment may select certain microbiomes, and tumor cells may directly interact with microbiome via molecular binding or secretions. Conversely, the intratumor microbiomes plays vital roles in regulating tumor initiation and progression via regulating the mutational landscape, the function of genes in tumor cells and modulating the tumor microenvironment, including immunity, inflammation, angiogenesis, stem cell niche, etc. Moreover, intratumor microbiome is regulated by anti-cancer therapies and actively influences therapy response, which could be a therapeutic target or engineered to be a therapy weapon in the clinic. This review highlights the intratumor microbiome as a vital component in the tumor microenvironment, uncovers potential mutual regulatory mechanisms between the tumor microenvironment and intratumor microbiome, and points out the ongoing research directions and drawbacks of the research area, which should broaden our view of microbiome and enlighten further investigation directions.
Collapse
Affiliation(s)
- Mingjie Jiang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zhongyuan Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Juanjuan Dai
- Department of Intensive Care UnitSun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Tong Wu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Zan Jiao
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Yongchao Yu
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Kang Ning
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Weichao Chen
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| | - Ankui Yang
- Department of Head and Neck SurgerySun Yat‐Sen University Cancer, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouP. R. China
| |
Collapse
|
19
|
Uemura T, Kawashima A, Jingushi K, Motooka D, Saito T, Nesrine S, Oka T, Okuda Y, Yamamoto A, Yamamichi G, Tomiyama E, Ishizuya Y, Yamamoto Y, Kato T, Hatano K, Tsujikawa K, Wada H, Nonomura N. Bacteria-derived DNA in serum extracellular vesicles are biomarkers for renal cell carcinoma. Heliyon 2023; 9:e19800. [PMID: 37810127 PMCID: PMC10559165 DOI: 10.1016/j.heliyon.2023.e19800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
This is the first study to determine the clinical importance of circulating bacterial DNA in patients with renal cell carcinoma (RCC). We performed 16S rRNA metagenomic analysis of serum extracellular vesicles (EVs) from 88 patients with RCC and 10 healthy donors and identified three abundant bacterial DNA: Bacteroidia, TM7-1, and Sphingomonadales. Combining characteristic bacterial DNA information (three bacteria-derived DNA), a BTS index was created to diagnose patients with RCC. The BTS index showed high sensitivity not only in the discovery cohort, but also in the validation cohort, suggesting that it was useful as a screening test. Furthermore, in nivolumab treatment of RCC, patients with higher levels of Bacteroidia DNA in serum EVs had significantly poorer progression-free and overall survival than did those with lower levels. This study showed that circulating Bacteria-derived DNA could be used as a biomarker for RCC.
Collapse
Affiliation(s)
- Toshihiro Uemura
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Osaka University Research Institute for Microbial Diseases, Suita, Osaka, 565-0871, Japan
| | - Takuro Saito
- Department of Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sassi Nesrine
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiki Oka
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yohei Okuda
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akinaru Yamamoto
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Gaku Yamamichi
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eisuke Tomiyama
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yu Ishizuya
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiyuki Yamamoto
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taigo Kato
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Hatano
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University, Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
20
|
Yang JW, Wan S, Li KP, Chen SY, Yang L. Gut and urinary microbiota: the causes and potential treatment measures of renal cell carcinoma. Front Immunol 2023; 14:1188520. [PMID: 37441065 PMCID: PMC10333567 DOI: 10.3389/fimmu.2023.1188520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Mounting evidence suggests that the gut microbiota plays a crucial role in the development and treatment of various cancers. Recent research on the urinary microbiota challenges the long-standing belief that urine is sterile, as urinary microbiota has been implicated in the development of bladder and prostate cancers, similar to the role of gut microbiota in cancer development. Although the precise involvement of microbiota in the proliferation and differentiation of renal cell carcinoma (RCC) remains unclear, dysbiosis is considered one possible mechanism by which microbiota may contribute to RCC development and treatment. This review summarizes potential mechanisms by which gut microbiota may contribute to the development of RCC, and provides evidence for the involvement of urinary microbiota in RCC. We also explore the role of gut microbiota in RCC treatment and propose that the composition of gut microbiota could serve as a predictive marker for the potential efficacy of immune checkpoint inhibitors (ICIs) in RCC patients. Additionally, evidence suggests that modulating the abundance and distribution of microbiota can enhance the therapeutic effects of drugs, suggesting that microbiota may serve as a promising adjuvant therapy for RCC. Overall, we believe that further investigation into the gut and urinary microbiome of RCC patients could yield valuable insights and strategies for the prevention and personalized treatment of RCC.
Collapse
Affiliation(s)
| | | | | | | | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
21
|
Piao XM, Byun YJ, Zheng CM, Song SJ, Kang HW, Kim WT, Yun SJ. A New Treatment Landscape for RCC: Association of the Human Microbiome with Improved Outcomes in RCC. Cancers (Basel) 2023; 15:cancers15030935. [PMID: 36765892 PMCID: PMC9913391 DOI: 10.3390/cancers15030935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Microbes play different roles in metabolism, local or systemic inflammation, and immunity, and the human microbiome in tumor microenvironment (TME) is important for modulating the response to immunotherapy in cancer patients. Renal cell carcinoma (RCC) is an immunogenic tumor, and immunotherapy is the backbone of its treatment. Correlations between the microbiome and responsiveness to immune checkpoint inhibitors have been reported. This review summarizes the recent therapeutic strategies for RCC and the effects of TME on the systemic therapy of RCC. The current understanding and advances in microbiome research and the relationship between the microbiome and the response to immunotherapy for RCC are also discussed. Improving our understanding of the role of the microbiome in RCC treatment will facilitate the development of microbiome targeting therapies to modify the tumor microbiome and improve treatment outcomes.
Collapse
Affiliation(s)
- Xuan-Mei Piao
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young Joon Byun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Chuang-Ming Zheng
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sun Jin Song
- Department of Emergency, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Ho Won Kang
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Won Tae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Department of Urology, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
- Correspondence: ; Tel.: +82-43-269-6142
| |
Collapse
|
22
|
Xue C, Chu Q, Zheng Q, Yuan X, Su Y, Bao Z, Lu J, Li L. Current understanding of the intratumoral microbiome in various tumors. Cell Rep Med 2023; 4:100884. [PMID: 36652905 PMCID: PMC9873978 DOI: 10.1016/j.xcrm.2022.100884] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023]
Abstract
It is estimated that in the future, the number of new cancer cases worldwide will exceed the 19.3 million recorded in 2020, and the number of deaths will exceed 10 million. Cancer remains the leading cause of human mortality and lagging socioeconomic development. Intratumoral microbes have been revealed to exist in many cancer types, including pancreatic, colorectal, liver, esophageal, breast, and lung cancers. Intratumoral microorganisms affect not only the host immune system, but also the effectiveness of tumor chemotherapy. This review concentrates on the characteristics and roles of intratumoral microbes in various tumors. In addition, the potential of therapies targeting intratumoral microbes, as well as the main challenges currently delaying these therapies, are explored. Furthermore, we briefly summarize existing technical methods used to characterize intratumoral microbes. We hope to provide ideas for exploring intratumoral microbes as potential biomarkers and targets for tumor diagnosis, treatment, and prognostication.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
23
|
Depsipeptides Targeting Tumor Cells: Milestones from In Vitro to Clinical Trials. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020670. [PMID: 36677728 PMCID: PMC9864405 DOI: 10.3390/molecules28020670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Cancer is currently considered one of the most threatening diseases worldwide. Diet could be one of the factors that can be enhanced to comprehensively address a cancer patient's condition. Unfortunately, most molecules capable of targeting cancer cells are found in uncommon food sources. Among them, depsipeptides have emerged as one of the most reliable choices for cancer treatment. These cyclic amino acid oligomers, with one or more subunits replaced by a hydroxylated carboxylic acid resulting in one lactone bond in a core ring, have broadly proven their cancer-targeting efficacy, some even reaching clinical trials and being commercialized as "anticancer" drugs. This review aimed to describe these depsipeptides, their reported amino acid sequences, determined structure, and the specific mechanism by which they target tumor cells including apoptosis, oncosis, and elastase inhibition, among others. Furthermore, we have delved into state-of-the-art in vivo and clinical trials, current methods for purification and synthesis, and the recognized disadvantages of these molecules. The information collated in this review can help researchers decide whether these molecules should be incorporated into functional foods in the near future.
Collapse
|
24
|
Gao F, Yu B, Rao B, Sun Y, Yu J, Wang D, Cui G, Ren Z. The effect of the intratumoral microbiome on tumor occurrence, progression, prognosis and treatment. Front Immunol 2022; 13:1051987. [PMID: 36466871 PMCID: PMC9718533 DOI: 10.3389/fimmu.2022.1051987] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 10/26/2023] Open
Abstract
In the past few decades, great progress has been achieved in the understanding of microbiome-cancer interactions. However, most of the studies have focused on the gut microbiome, ignoring how other microbiomes interact with tumors. Emerging evidence suggests that in many types of cancers, such as lung cancer, pancreatic cancer, and colorectal cancer, the intratumoral microbiome plays a significant role. In addition, accumulating evidence suggests that intratumoral microbes have multiple effects on the biological behavior of tumors, for example, regulating tumor initiation and progression and altering the tumor response to chemotherapy and immunotherapy. However, to fully understand the role of the intratumoral microbiome in cancer, further investigation of the effects and mechanisms is still needed. This review discusses the role of intratumoral bacteria in tumorigenesis and tumor progression, recurrence and metastasis, as well as their effect on cancer prognosis and treatment outcome, and summarizes the relevant mechanisms.
Collapse
Affiliation(s)
- Feng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Yu
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daming Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Deluce J, Maleki Vareki S, Fernandes R. The role of gut microbiome in immune modulation in metastatic renal cell carcinoma. Ther Adv Med Oncol 2022; 14:17588359221122714. [PMID: 36105887 PMCID: PMC9465582 DOI: 10.1177/17588359221122714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Treatment of metastatic renal cell carcinomas (mRCC) has drastically improved
since the advent of immunotherapy with immune checkpoint inhibitors (ICIs), with
a significant proportion of patients achieving durable responses. While this has
revolutionized treatment and improved outcomes for mRCC patients, a large subset
of patients still does not respond to treatment with ICIs. Moreover, ICIs can
induce various immune-related adverse events, limiting their use in many
patients. Therefore, there is a need to identify the predictive biomarkers of
both efficacy and toxicity associated with ICIs, which would allow for a more
personalized approach and help with clinical decision-making. This review aims
to explore the role of the gut microbiome in RCC to overcome primary resistance
and predict response to treatment with ICIs. First, current therapeutic
strategies and mechanisms of action of ICI therapies for RCC treatment will be
reviewed. With the technological development of shotgun whole-genome sequencing,
the gut microbiome has emerged as an exciting field of research within oncology.
Thus, the role of the microbiome and its bidirectional interaction with ICIs and
other drugs will be explored, with a particular focus on the microbiome profile
in RCC. Lastly, the rationale for future clinical interventions to overcome
resistance to ICIs using fecal microbiota transplantation in patients with RCC
will be presented.
Collapse
Affiliation(s)
- Jasna Deluce
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Saman Maleki Vareki
- Division of Experimental Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, CanadaDepartment of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London Regional Cancer Program, Room A4-130A, Cancer Research Laboratory Program, London, ON N6A 3K7, Canada.Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON, Canada
| | - Ricardo Fernandes
- Division of Medical Oncology, Department of Oncology, Schulich School of Medicine & Dentistry, Western University, 800 Commissioners Road East, Room A3-940, London ON N6A 5W9, Canada.Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
26
|
Kovaleva OV, Podlesnaya P, Sorokin M, Mochalnikova V, Kataev V, Khlopko YA, Plotnikov AO, Stilidi IS, Kushlinskii NE, Gratchev A. Macrophage Phenotype in Combination with Tumor Microbiome Composition Predicts RCC Patients’ Survival: A Pilot Study. Biomedicines 2022; 10:biomedicines10071516. [PMID: 35884821 PMCID: PMC9312790 DOI: 10.3390/biomedicines10071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
The identification of new prognostic markers of renal cell carcinoma (RCC) is an urgent problem in oncourology. To investigate the potential prognostic significance of tumor microbiome and stromal inflammatory markers, we studied a cohort of 66 patients with RCC (23 clear cell RCC, 19 papillary RCC and 24 chromophobe RCC). The microbiome was analyzed in tumor and normal tissue by 16S rRNA amplicon sequencing. Characterization of the tumor stroma was performed using immunohistochemistry. A significant difference in alpha diversity was demonstrated between normal kidney tissue and all types of RCC. Further, we demonstrated that the bacterial burden was higher in adjacent normal tissue than in a tumor. For the first time, we demonstrated a significant correlation between bacterial burden and the content of PU.1+ macrophages and CD66b+ neutrophils in kidney tumors. Tumors with high content of PU.1+ cells and CD66b+ cells in the stroma were characterized by a lower bacterial burden. In the tumors with high bacterial burden, the number of PU.1+ cells and CD66b+ was associated with a poor prognosis. The identified associations indicate the great prognostic potential of a combined tumor microbiome and stromal cell analysis.
Collapse
Affiliation(s)
- Olga V. Kovaleva
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (O.V.K.); (P.P.); (M.S.); (V.M.); (I.S.S.); (N.E.K.)
| | - Polina Podlesnaya
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (O.V.K.); (P.P.); (M.S.); (V.M.); (I.S.S.); (N.E.K.)
| | - Maxim Sorokin
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (O.V.K.); (P.P.); (M.S.); (V.M.); (I.S.S.); (N.E.K.)
| | - Valeria Mochalnikova
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (O.V.K.); (P.P.); (M.S.); (V.M.); (I.S.S.); (N.E.K.)
| | - Vladimir Kataev
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 460000 Orenburg, Russia; (V.K.); (Y.A.K.); (A.O.P.)
| | - Yuriy A. Khlopko
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 460000 Orenburg, Russia; (V.K.); (Y.A.K.); (A.O.P.)
| | - Andrey O. Plotnikov
- Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, 460000 Orenburg, Russia; (V.K.); (Y.A.K.); (A.O.P.)
| | - Ivan S. Stilidi
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (O.V.K.); (P.P.); (M.S.); (V.M.); (I.S.S.); (N.E.K.)
| | - Nikolay E. Kushlinskii
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (O.V.K.); (P.P.); (M.S.); (V.M.); (I.S.S.); (N.E.K.)
| | - Alexei Gratchev
- N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (O.V.K.); (P.P.); (M.S.); (V.M.); (I.S.S.); (N.E.K.)
- Correspondence: or ; Tel.: +7-906-736-1869
| |
Collapse
|
27
|
Sharma R, Kannourakis G, Prithviraj P, Ahmed N. Precision Medicine: An Optimal Approach to Patient Care in Renal Cell Carcinoma. Front Med (Lausanne) 2022; 9:766869. [PMID: 35775004 PMCID: PMC9237320 DOI: 10.3389/fmed.2022.766869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Renal cell cancer (RCC) is a heterogeneous tumor that shows both intra- and inter-heterogeneity. Heterogeneity is displayed not only in different patients but also among RCC cells in the same tumor, which makes treatment difficult because of varying degrees of responses generated in RCC heterogeneous tumor cells even with targeted treatment. In that context, precision medicine (PM), in terms of individualized treatment catered for a specific patient or groups of patients, can shift the paradigm of treatment in the clinical management of RCC. Recent progress in the biochemical, molecular, and histological characteristics of RCC has thrown light on many deregulated pathways involved in the pathogenesis of RCC. As PM-based therapies are rapidly evolving and few are already in current clinical practice in oncology, one can expect that PM will expand its way toward the robust treatment of patients with RCC. This article provides a comprehensive background on recent strategies and breakthroughs of PM in oncology and provides an overview of the potential applicability of PM in RCC. The article also highlights the drawbacks of PM and provides a holistic approach that goes beyond the involvement of clinicians and encompasses appropriate legislative and administrative care imparted by the healthcare system and insurance providers. It is anticipated that combined efforts from all sectors involved will make PM accessible to RCC and other patients with cancer, making a tremendous positive leap on individualized treatment strategies. This will subsequently enhance the quality of life of patients.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Central Technology Central Park, Ballarat Central, VIC, Australia
- School of Science, Psychology and Sport, Federation University, Mt Helen, VIC, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
A comprehensive analysis of intratumor microbiome in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2022; 279:4127-4136. [PMID: 35122129 DOI: 10.1007/s00405-022-07284-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Human microbiome has been considered as the second genome of our body. The intratissue/intratumor microbiome analysis is a relatively new field and deserves more attention. In this study, we conducted a comprehensive analysis of microbiome signatures of head and neck squamous cell carcinoma (HNSC). METHODS The intratumor microbiome profiling and clinicopathological information about a total of 177 HNSC samples, including 155 tumors and 22 adjacent normal tissues, were obtained from The Cancer Microbiome Atlas (TCMA) and The Cancer Genome Atlas (TCGA) databases. We identified the microbes that differed between tumors and normal tissues, and assessed their utility values as diagnostic biomarkers. The microbiome signatures under different conditions of clinicopathological parameters were also analyzed. RESULTS The intratissue microbiome profiles differed between tumor and normal samples of HNSC. The composition of four, six, and six microbes changed in tumors compared to normal tissues at the phylum, order, and genus levels, respectively (P < 0.05). Eight of the differential microbes performed well in distinguishing tumors from normal tissues (AUC > 0.7, P ≤ 0.001). The microbiome signature was found to be associated with tumor clinicopathological characteristics such as host-gender, host-age, tumor stage, and neoplasm histologic grade. CONCLUSION Overall, our results revealed an intratissue microbiome signature of HNSC. We concluded that the intratumor microbiome signature may also reflect human biology in both healthy and disease status, and provide novel perspective for microbiota research about their roles in tumors.
Collapse
|
29
|
Kato I, Zhang J, Sun J. Bacterial-Viral Interactions in Human Orodigestive and Female Genital Tract Cancers: A Summary of Epidemiologic and Laboratory Evidence. Cancers (Basel) 2022; 14:425. [PMID: 35053587 PMCID: PMC8773491 DOI: 10.3390/cancers14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infectious agents, including viruses, bacteria, fungi, and parasites, have been linked to pathogenesis of human cancers, whereas viruses and bacteria account for more than 99% of infection associated cancers. The human microbiome consists of not only bacteria, but also viruses and fungi. The microbiome co-residing in specific anatomic niches may modulate oncologic potentials of infectious agents in carcinogenesis. In this review, we focused on interactions between viruses and bacteria for cancers arising from the orodigestive tract and the female genital tract. We examined the interactions of these two different biological entities in the context of human carcinogenesis in the following three fashions: (1) direct interactions, (2) indirect interactions, and (3) no interaction between the two groups, but both acting on the same host carcinogenic pathways, yielding synergistic or additive effects in human cancers, e.g., head and neck cancer, liver cancer, colon cancer, gastric cancer, and cervical cancer. We discuss the progress in the current literature and summarize the mechanisms of host-viral-bacterial interactions in various human cancers. Our goal was to evaluate existing evidence and identify gaps in the knowledge for future directions in infection and cancer.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jilei Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
30
|
Uncovering the role of urinary microbiota in urological tumors: a systematic review of literature. World J Urol 2022; 40:951-964. [PMID: 34997296 DOI: 10.1007/s00345-021-03924-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Urinary microbiota has been found to play a key role in numerous urological diseases. The aim of this systematic review is to depict the role of urinary microbiota in the pathogenesis, diagnosis, prognosis, and treatment of urological tumors, including bladder cancer (BCa), prostate cancer (PCa) and renal cell carcinoma (RCC). METHODS A systematic PubMed and Scopus search was undergone from inception through June 2021 for studies investigating urinary microbiota alterations in urological tumors. Study selection followed the PRISMA statement. Phylum, family, genus and species of each bacterium in cancer patients and controls were recorded. RESULTS Twenty-one studies with 1194 patients (748 cancer patients and 446 controls) were included in our final analysis. Certain bacterial phylum, family, genus, and species were more predominant in each of BCa, PCa and RCC patients compared to controls. Abundance and specificity of urinary microbiota were prognosticators for: (1) recurrence, distinguishing recurrent from non-recurrent BCa, (2) disease stage, distinguishing non-muscle invasive from muscle invasive BCa, and (3) disease grade, distinguishing high- vs. low-grade PCa and BCa. Dietary, environmental and geographic patterns influenced urinary microbiota. Urinary microbiota of benign prostatic hyperplasia was different from PCa. CONCLUSION Urological cancer patients have an altered urinary microbiota compared to controls. This may predict recurrence, disease stage and disease grade of these tumors. Further prospective studies are needed to depict a potential influence on therapeutic outcomes.
Collapse
|
31
|
Ikegami H, Noguchi S, Fukuda K, Akata K, Yamasaki K, Kawanami T, Mukae H, Yatera K. Refinement of microbiota analysis of specimens from patients with respiratory infections using next-generation sequencing. Sci Rep 2021; 11:19534. [PMID: 34599245 PMCID: PMC8486753 DOI: 10.1038/s41598-021-98985-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have been applied in bacterial flora analysis. However, there is no standardized protocol, and the optimal clustering threshold for estimating bacterial species in respiratory infection specimens is unknown. This study was conducted to investigate the optimal threshold for clustering 16S ribosomal RNA gene sequences into operational taxonomic units (OTUs) by comparing the results of NGS technology with those of the Sanger method, which has a higher accuracy of sequence per single read than NGS technology. This study included 45 patients with pneumonia with aspiration risks and 35 patients with lung abscess. Compared to Sanger method, the concordance rates of NGS technology (clustered at 100%, 99%, and 97% homology) with the predominant phylotype were 78.8%, 71.3%, and 65.0%, respectively. With respect to the specimens dominated by the Streptococcus mitis group, containing several important causative agents of pneumonia, Bray Curtis dissimilarity revealed that the OTUs obtained at 100% clustering threshold (versus those obtained at 99% and 97% thresholds; medians of 0.35, 0.69, and 0.71, respectively) were more similar to those obtained by the Sanger method, with statistical significance (p < 0.05). Clustering with 100% sequence identity is necessary when analyzing the microbiota of respiratory infections using NGS technology.
Collapse
Affiliation(s)
- Hiroaki Ikegami
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Shingo Noguchi
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Kazumasa Fukuda
- Department of Microbiology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kentaro Akata
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Kei Yamasaki
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Toshinori Kawanami
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu-city, Fukuoka, 807-8555, Japan.
| |
Collapse
|
32
|
Mjaess G, Karam A, Aoun F, Albisinni S, Roumeguère T. Fecal microbiota transplantation for immunotherapy-resistant urological tumors: Is it time? An update of the recent literature. Cancer 2021; 128:14-19. [PMID: 34494666 DOI: 10.1002/cncr.33893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Georges Mjaess
- Department of Urology, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Hotel-Dieu de France, University of Saint Joseph, Beirut, Lebanon
| | - Aya Karam
- Hotel-Dieu de France, University of Saint Joseph, Beirut, Lebanon
| | - Fouad Aoun
- Hotel-Dieu de France, University of Saint Joseph, Beirut, Lebanon.,Department of Urology, Institut Jules Bordet, Brussels, Belgium
| | - Simone Albisinni
- Department of Urology, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Thierry Roumeguère
- Department of Urology, University Clinics of Brussels, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Department of Urology, Institut Jules Bordet, Brussels, Belgium
| |
Collapse
|
33
|
Uriarte-Navarrete I, Hernández-Lemus E, de Anda-Jáuregui G. Gene-Microbiome Co-expression Networks in Colon Cancer. Front Genet 2021; 12:617505. [PMID: 33659025 PMCID: PMC7917223 DOI: 10.3389/fgene.2021.617505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
It is known that cancer onset and development arise from complex, multi-factorial phenomena spanning from the molecular, functional, micro-environmental, and cellular up to the tissular and organismal levels. Important advances have been made in the systematic analysis of the molecular (mostly genomic and transcriptomic) within large studies of high throughput data such as The Cancer Genome Atlas collaboration. However, the role of the microbiome in the induction of biological changes needed to reach these pathological states remains to be explored, largely because of scarce experimental data. In recent work a non-standard bioinformatics strategy was used to indirectly quantify microbial abundance from TCGA RNA-seq data, allowing the evaluation of the microbiome in well-characterized cancer patients, thus opening the way to studies incorporating the molecular and microbiome dimensions altogether. In this work, we used such recently described approaches for the quantification of microbial species alongside with gene expression. With this, we will reconstruct bipartite networks linking microbial abundance and gene expression in the context of colon cancer, by resorting to network reconstruction based on measures from information theory. The rationale is that microbial communities may induce biological changes important for the cancerous state. We analyzed changes in microbiome-gene interactions in the context of early (stages I and II) and late (stages III and IV) colon cancer, studied changes in network descriptors, and identify key discriminating features for early and late stage colon cancer. We found that early stage bipartite network is associated with the establishment of structural features in the tumor cells, whereas late stage is related to more advance signaling and metabolic features. This functional divergence thus arise as a consequence of changes in the organization of the corresponding gene-microorganism co-expression networks.
Collapse
Affiliation(s)
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Conacyt Research Chairs, National Council on Science and Technology, Mexico City, Mexico
| |
Collapse
|
34
|
Oliva M, Mulet-Margalef N, Ochoa-De-Olza M, Napoli S, Mas J, Laquente B, Alemany L, Duell EJ, Nuciforo P, Moreno V. Tumor-Associated Microbiome: Where Do We Stand? Int J Mol Sci 2021; 22:1446. [PMID: 33535583 PMCID: PMC7867144 DOI: 10.3390/ijms22031446] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
The study of the human microbiome in oncology is a growing and rapidly evolving field. In the past few years, there has been an exponential increase in the number of studies investigating associations of microbiome and cancer, from oncogenesis and cancer progression to resistance or sensitivity to specific anticancer therapies. The gut microbiome is now known to play a significant role in antitumor immune responses and in predicting the efficacy of immune-checkpoint inhibitors in cancer patients. Beyond the gut, the tumor-associated microbiome-microbe communities located either in the tumor or within its body compartment-seems to interact with the local microenvironment and the tumor immune contexture, ultimately impacting cancer progression and treatment outcome. However, pre-clinical research focusing on causality and mechanistic pathways as well as proof-of-concept studies are still needed to fully understand the potential clinical utility of microbiome in cancer patients. Moreover, there is a need for the standardization of methodology and the implementation of quality control across microbiome studies to allow for a better interpretation and greater comparability of the results reported between them. This review summarizes the accumulating evidence in the field and discusses the current and upcoming challenges of microbiome studies.
Collapse
Affiliation(s)
- Marc Oliva
- Medical Oncology Department, Catalan Institute of Oncology L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (N.M.-M.); (B.L.)
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
| | - Nuria Mulet-Margalef
- Medical Oncology Department, Catalan Institute of Oncology L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (N.M.-M.); (B.L.)
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
| | - Maria Ochoa-De-Olza
- Service of Immuno-Oncology, Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland;
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Lausanne, Switzerland
| | - Stefania Napoli
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (S.N.); (P.N.)
| | - Joan Mas
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, 08908 Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain;
| | - Berta Laquente
- Medical Oncology Department, Catalan Institute of Oncology L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (N.M.-M.); (B.L.)
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
| | - Laia Alemany
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain;
- Cancer Epidemiology Research Program, Catalan Institute of Oncology, L’Hospitalet de Llobregat, 08908 Catalonia, Spain
- EPIBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain
| | - Eric J. Duell
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, 08908 Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain;
| | - Paolo Nuciforo
- Molecular Oncology Group, Vall d’Hebron Institute of Oncology, 08035 Barcelona, Spain; (S.N.); (P.N.)
| | - Victor Moreno
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Catalonia, Spain; (J.M.); (E.J.D.); (V.M.)
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, 08908 Catalonia, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain;
| |
Collapse
|