1
|
Schaft N, Dörrie J. The Role of Non-coding RNAs in Tumorigenesis, Diagnosis/Prognosis, and Therapeutic Strategies for Cutaneous Melanoma. Methods Mol Biol 2025; 2883:79-107. [PMID: 39702705 DOI: 10.1007/978-1-0716-4290-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
RNA is a substance with various biological functions. It serves as blueprint for proteins and shuttles information from the genes to the protein factories of the cells. However, these factories-the ribosomes-are also composed mainly of RNA, whose purpose is not storing information but enzymatic action. In addition, there is a cornucopia of RNA molecules within our cells that form a complex regulatory network, connected with all aspects of cellular development and maintenance. These non-coding RNAs can be used for diagnostics and therapeutic strategies in cancer. In this chapter we give an overview of recent developments in non-coding RNA-based diagnostics and therapies for cutaneous melanoma. It is not meant to be comprehensive; however, it describes examples based on some of the most recent publications in this field.
Collapse
Affiliation(s)
- Niels Schaft
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, CCC WERA, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Deutsches Zentrum Immuntherapie (DZI), Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Jan Dörrie
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, CCC WERA, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Deutsches Zentrum Immuntherapie (DZI), Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| |
Collapse
|
2
|
Afsar S, Syed RU, Khojali WMA, Masood N, Osman ME, Jyothi JS, Hadi MA, Khalifa AAS, Aboshouk NAM, Alsaikhan HA, Alafnan AS, Alrashidi BA. Non-coding RNAs in BRAF-mutant melanoma: targets, indicators, and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:297-317. [PMID: 39167168 DOI: 10.1007/s00210-024-03366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Melanoma, a highly aggressive skin cancer, is often driven by BRAF mutations, such as the V600E mutation, which promotes cancer growth through the MAPK pathway and contributes to treatment resistance. Understanding the role of non-coding RNAs (ncRNAs) in these processes is crucial for developing new therapeutic strategies. This review aims to elucidate the relationship between ncRNAs and BRAF mutations in melanoma, focusing on their regulatory roles and impact on treatment resistance. We comprehensively reviewed current literature to synthesize evidence on ncRNA-mediated regulation of BRAF-mutant melanoma and their influence on therapeutic responses. Key ncRNAs, including microRNAs and long ncRNAs, were identified as significant regulators of melanoma development and therapy resistance. MicroRNAs such as miR-15/16 and miR-200 families modulate critical pathways like Wnt signaling and melanogenesis. Long ncRNAs like ANRIL and SAMMSON play roles in cell growth, invasion, and drug susceptibility. Specific ncRNAs, such as BANCR and RMEL3, intersect with the MAPK pathway, highlighting their potential as therapeutic targets or biomarkers in BRAF-mutant melanoma. Additionally, ncRNAs involved in drug resistance, such as miR-579-3p and miR-1246, target processes like autophagy and immune checkpoint regulation. This review highlights the pivotal roles of ncRNAs in regulating BRAF-mutant melanoma and their contribution to drug resistance. These findings underscore the potential of ncRNAs as biomarkers and therapeutic targets, paving the way for innovative treatments to improve outcomes for melanoma patients.
Collapse
Affiliation(s)
- S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh, 517502, India.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, 81442, Hail, Saudi Arabia.
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, 14415, Sudan
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, 81451, Ha'il,, Saudi Arabia
| | - Mhdia Elhadi Osman
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - J Siva Jyothi
- Department of Pharmaceutics, Hindu College of Pharmacy, Andhra Pradesh, India
| | - Mohd Abdul Hadi
- Department of Pharmaceutics, Bhaskar Pharmacy College, Moinabad, R.R.District, Hyderabad, 500075, Telangana, India
| | - Amna Abakar Suleiman Khalifa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | - Nayla Ahmed Mohammed Aboshouk
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 81442, Hail, Saudi Arabia
| | | | | | | |
Collapse
|
3
|
Wang Z, Xie C, Chen X. Diagnostic and therapeutic role of non-coding RNAs regulating programmed cell death in melanoma. Front Oncol 2024; 14:1476684. [PMID: 39777348 PMCID: PMC11703721 DOI: 10.3389/fonc.2024.1476684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
lncRNAs (long non-coding RNAs) are heterogeneous RNA molecules that modulate various cellular processes, such as proliferation, differentiation, migration, invasion, and apoptosis, via different mechanisms. An increasing amount of research indicates that abnormal expression of lncRNA influences the development of drug resistance as well as the genesis and advancement of cancer, including melanoma. Furthermore, they are attractive biomarkers for non-invasive cancer diagnostics due to their strongly modulated expression and improved tissue and disease specificity. This review offers a succinct overview of the present understanding concerning the potential diagnostic biomarker potential of lncRNAs in melanoma. Cell death occurs frequently during growth and throughout life and is an active, organized, and genetically determined process. It is essential for the regulation of homeostasis. Controlled cell death and non-programmed cell death are both forms of cell death. The most prevalent forms of regulatory cell death are pyroptosis, ferroptosis, autophagy, necroptosis, necrosis, and apoptosis. Ferroptosis, pyroptosis, and autophagy are less common forms of cell death compared to necrosis, apoptosis, and necroptosis. ncRNAs are regulatory RNA molecules that are not involved in encoding proteins. They primarily consist of circular RNAs (circ RNAs), lncRNAs, and microRNAs (miRNAs). Moreover, non-coding RNAs have the ability to modulate tumor cell autophagy, pyroptosis, and ferroptosis at the transcriptional or post-transcriptional stage, as well as function as oncogenes and tumor suppressor genes, which can have considerable effects on the incidence and growth of tumors. This review concentrated on the recent advancements in the research of the diagnostic and therapeutic functions of ncRNAs in the regulation of programmed cell death in melanoma.
Collapse
Affiliation(s)
- Zixu Wang
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cong Xie
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiao Chen
- Office for Postgraduate Student Studies, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Tsai KW, Liao JB, Tseng HW. Metformin regulates the proliferation and motility of melanoma cells by modulating the LINC00094/miR-1270 axis. Cancer Cell Int 2024; 24:384. [PMID: 39563323 PMCID: PMC11575040 DOI: 10.1186/s12935-024-03545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Melanoma is an aggressive tumor with a high mortality rate. Metformin, a commonly prescribed diabetes medication, has shown promise in cancer prevention and treatment. Long noncoding RNAs (lncRNAs) are non-protein-coding RNA molecules that play a key role in tumor development by interacting with cellular chromatins. Despite the benefits of metformin, the anticancer mechanism underlying its effect on the regulation of lncRNAs in melanoma remains unclear. METHODS We investigated the lncRNA profiles of human melanoma cells with and without metformin treatment using a next-generation sequencing approach (NGS). Utilizing public databases, we analyzed the expression levels and clinical impacts of LINC00094 and miR-1270 in melanoma. The expression levels of LINC00094 and miR-1270 were verified in human cell lines and clinical samples by real-time PCR and in situ hybridization. The biological roles of LINC00094 and miR-1270 in cell growth, proliferation, cell cycle, apoptosis, and motility were studied using in vitro assays. RESULTS We identify a novel long noncoding RNA, namely LINC00094, whose expression considerably decreased in melanoma cells after metformin treatment. In situ hybridization analysis revealed substantially higher expression of LINC00094 in cutaneous melanoma tissue compared with adjacent normal epidermis and normal control tissues (P < 0.001). In nondiabetic patients with melanoma, the overall survival of high LINC00094 expression group was shorter than the low LINC00094 expression group with borderline statistical significance (log-rank test, P = 0.057). Coexpression analysis of LINC00094 indicated its involvement in the mitochondrial respiratory pathway, with its knockdown suppressing genes associated with mitochondrial oxidative phosphorylation, glycolysis, antioxidant production, and metabolite levels. Functional analysis revealed that silencing-LINC00094 inhibited the proliferation, colony formation, invasion, and migration of melanoma cells. Cell cycle analysis following LINC00094 knockdown revealed G1 phase arrest with reduced cell cycle protein expression. Combined TargetScan and reporter assays revealed a direct link between miR-1270 and LINC00094. Ectopic miR-1270 expression inhibited melanoma cell growth and motility while inducing apoptosis. Finally, through in silico analysis, we identified two miR-1270 target genes, CD276 and centromere protein M (CENPM), which may be involved in the biological functions of LINC00094. CONCLUSIONS Overall, LINC00094 expression may regulate melanoma cell growth and motility by modulating the expression of miR-1270, and targeting genes of CD276 and CENPM indicating its therapeutic potential in melanoma treatment.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Shu Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hui-Wen Tseng
- Department of Dermatology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan.
- Institute of Biomedical Sciences, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Nursing, College of Nursing, Meiho University, Neipu, Pingtung, Taiwan.
| |
Collapse
|
5
|
Beatriz Cristina Biz T, Carolina de Sousa CS, Frank John S, Miriam Galvonas J. LncRNAs in melanoma phenotypic plasticity: emerging targets for promising therapies. RNA Biol 2024; 21:81-93. [PMID: 39498940 PMCID: PMC11540095 DOI: 10.1080/15476286.2024.2421672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have received growing attention due to their diverse regulatory roles in cancer, including in melanoma, an aggressive type of skin cancer. The plasticity and phenotypic adaptability of melanoma cells are crucial factors contributing to therapeutic resistance. The identification of molecules playing key roles in melanoma cell plasticity could unravel novel and more effective therapeutic targets. This review presents current concepts of melanoma cell plasticity, illustrating its fluidity and dismissing the outdated notion of epithelial-mesenchymal-like transition as a simplistic binary process. Emphasis is placed on the pivotal role of lncRNAs in orchestrating cell plasticity, employing various mechanisms recently elucidated and unveiling their potential as promising targets for novel therapeutic strategies. Insights into the molecular mechanisms coordinated by lncRNAs in melanoma pave the way for the development of RNA-based therapies, holding great promise for enhancing treatment outcomes and offering a glimpse into a more effective approach to melanoma treatment.
Collapse
Affiliation(s)
- Tonin Beatriz Cristina Biz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Slack Frank John
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jasiulionis Miriam Galvonas
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. The emerging role of noncoding RNAs in the EGFR signaling pathway in lung cancer. Pathol Res Pract 2024; 253:155016. [PMID: 38070221 DOI: 10.1016/j.prp.2023.155016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
Noncoding ribonucleic acids (ncRNAs) have surfaced as essential orchestrators within the intricate system of neoplastic biology. Specifically, the epidermal growth factor receptor (EGFR) signalling cascade shows a central role in the etiological underpinnings of pulmonary carcinoma. Pulmonary malignancy persists as a preeminent contributor to worldwide mortality attributable to malignant neoplasms, with non-small cell lung carcinoma (NSCLC) emerging as the most predominant histopathological subcategory. EGFR is a key driver of NSCLC, and its dysregulation is frequently associated with tumorigenesis, metastasis, and resistance to therapy. Over the past decade, researchers have unveiled a complex network of ncRNAs, encompassing microRNAs, long noncoding RNAs, and circular RNAs, which intricately regulate EGFR signalling. MicroRNAs, as versatile post-transcriptional regulators, have been shown to target various components of the EGFR pathway, influencing cancer cell proliferation, migration, and apoptosis. Additionally, ncRNAs have emerged as critical modulators of EGFR signalling, with their potential to act as scaffolds, decoys, or guides for EGFR-related proteins. Circular RNAs, a relatively recent addition to the ncRNA family, have also been implicated in EGFR signalling regulation. The clinical implications of ncRNAs in EGFR-driven lung cancer are substantial. These molecules exhibit diagnostic potential as robust biomarkers for early cancer detection and personalized treatment. Furthermore, their predictive value extends to predicting disease progression and therapeutic outcomes. Targeting ncRNAs in the EGFR pathway represents a novel therapeutic approach with promising results in preclinical and early clinical studies. This review explores the increasing evidence supporting the significant role of ncRNAs in modulating EGFR signalling in lung cancer, shedding light on their potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Liu J, Hu X, Xin W, Wang X. Exosomal Non-coding RNAs: A New Approach to Melanoma Diagnosis and Therapeutic Strategy. Curr Med Chem 2024; 31:6084-6109. [PMID: 37877505 DOI: 10.2174/0109298673267553231017053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Malignant melanoma (MM) is a highly aggressive cancer with a poor prognosis. Currently, although a variety of therapies are available for treating melanoma, MM is still a serious threat to the patient's life due to numerous factors, such as the recurrence of tumors, the emergence of drug resistance, and the lack of effective therapeutic agents. Exosomes are biologically active lipid-bilayer extracellular vesicles secreted by diverse cell types that mediate intercellular signal communication. Studies found that exosomes are involved in cancer by carrying multiple bioactive molecules, including non-- coding RNAs (ncRNAs). The ncRNAs have been reported to play an important role in regulating proliferation, angiogenesis, immune regulation, invasion, metastasis, and treatment resistance of tumors. However, the functional role of exosomal ncRNAs in MM remains unknown. Therefore, this review summarizes the current state of melanoma diagnosis, treatment, and the application of exosomal ncRNAs in MM patients, which may provide new insights into the mechanisms involved in melanoma progression and serve as biomarkers for diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Xiaoping Hu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China, 300052
| | - Xianbin Wang
- Department of Emergency Medicine, The Second Affiliated Hospital of Baotou Medical College, Baotou 014030, China
| |
Collapse
|
8
|
Zhou W, Xu X, Cen Y, Chen J. The role of lncRNAs in the tumor microenvironment and immunotherapy of melanoma. Front Immunol 2022; 13:1085766. [PMID: 36601121 PMCID: PMC9806239 DOI: 10.3389/fimmu.2022.1085766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is one of the most lethal tumors with highly aggressive and metastatic properties. Although immunotherapy and targeted therapy have certain therapeutic effects in melanoma, a significant proportion of patients still have drug resistance after treatment. Recent studies have shown that long noncoding RNAs (lncRNAs) are widely recognized as regulatory factors in cancer. They can regulate numerous cellular processes, including cell proliferation, metastasis, epithelial-mesenchymal transition (EMT) progression and the immune microenvironment. The role of lncRNAs in malignant tumors has received much attention, whereas the relationship between lncRNAs and melanoma requires further investigation. Our review summarizes tumor suppressive and oncogenic lncRNAs closely related to the occurrence and development of melanoma. We summarize the role of lncRNAs in the immune microenvironment, immunotherapy and targeted therapy to provide new targets and therapeutic methods for clinical treatment.
Collapse
|
9
|
LINC00589-dominated ceRNA networks regulate multiple chemoresistance and cancer stem cell-like properties in HER2 + breast cancer. NPJ Breast Cancer 2022; 8:115. [PMID: 36309503 PMCID: PMC9617889 DOI: 10.1038/s41523-022-00484-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapy (trastuzumab), cancer stem cell (CSC)-like properties and multiple chemoresistance often concur and intersect in breast cancer, but molecular links that may serve as effective therapeutic targets remain largely unknown. Here, we identified the long noncoding RNA, LINC00589 as a key regulatory node for concurrent intervention of these processes in breast cancer cells in vitro and in vivo. We demonstrated that the expression of LINC00589 is clinically valuable as an independent prognostic factor for discriminating trastuzumab responders. Mechanistically, LINC00589 serves as a ceRNA platform that simultaneously sponges miR-100 and miR-452 and relieves their repression of tumor suppressors, including discs large homolog 5 (DLG5) and PR/SET domain 16 (PRDM16, a transcription suppressor of mucin4), thereby exerting multiple cancer inhibitory functions and counteracting drug resistance. Collectively, our results disclose two LINC00589-initiated ceRNA networks, the LINC00589-miR-100-DLG5 and LINC00589-miR-452-PRDM16- mucin4 axes, which regulate trastuzumab resistance, CSC-like properties and multiple chemoresistance of breast cancer, thus providing potential diagnostic and prognostic markers and therapeutic targets for HER2-positive breast cancer.
Collapse
|
10
|
Morante M, Pandiella A, Crespo P, Herrero A. Immune Checkpoint Inhibitors and RAS-ERK Pathway-Targeted Drugs as Combined Therapy for the Treatment of Melanoma. Biomolecules 2022; 12:1562. [PMID: 36358912 PMCID: PMC9687808 DOI: 10.3390/biom12111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/08/2023] Open
Abstract
Metastatic melanoma is a highly immunogenic tumor with very poor survival rates due to immune system escape-mechanisms. Immune checkpoint inhibitors (ICIs) targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and the programmed death-1 (PD1) receptors, are being used to impede immune evasion. This immunotherapy entails an increment in the overall survival rates. However, melanoma cells respond with evasive molecular mechanisms. ERK cascade inhibitors are also used in metastatic melanoma treatment, with the RAF activity blockade being the main therapeutic approach for such purpose, and in combination with MEK inhibitors improves many parameters of clinical efficacy. Despite their efficacy in inhibiting ERK signaling, the rewiring of the melanoma cell-signaling results in disease relapse, constituting the reinstatement of ERK activation, which is a common cause of some resistance mechanisms. Recent studies revealed that the combination of RAS-ERK pathway inhibitors and ICI therapy present promising advantages for metastatic melanoma treatment. Here, we present a recompilation of the combined therapies clinically evaluated in patients.
Collapse
Affiliation(s)
- Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Atanasio Pandiella
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Salamanca and IBSAL, 37007 Salamanca, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| | - Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28009 Madrid, Spain
| |
Collapse
|
11
|
Melixetian M, Pelicci PG, Lanfrancone L. Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells 2022; 11:577. [PMID: 35159386 PMCID: PMC8834033 DOI: 10.3390/cells11030577] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators of numerous intracellular processes leading to tumorigenesis. They are frequently deregulated in cancer, functioning as oncogenes or tumor suppressors. As they act through multiple mechanisms, it is not surprising that they may exert dual functions in the same tumor. In melanoma, a highly invasive and metastatic tumor with the propensity to rapidly develop drug resistance, lncRNAs play different roles in: (i) guiding the phenotype switch and leading to metastasis formation; (ii) predicting the response of melanoma patients to immunotherapy; (iii) triggering adaptive responses to therapy and acquisition of drug resistance phenotypes. In this review we summarize the most recent findings on the lncRNAs involved in melanoma growth and spreading to distant sites, focusing on their role as biomarkers for disease diagnosis and patient prognosis, or targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Marine Melixetian
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy; (M.M.); (P.G.P.)
| |
Collapse
|
12
|
Zhong J, Yan W, Wang C, Liu W, Lin X, Zou Z, Sun W, Chen Y. BRAF Inhibitor Resistance in Melanoma: Mechanisms and Alternative Therapeutic Strategies. Curr Treat Options Oncol 2022; 23:1503-1521. [PMID: 36181568 PMCID: PMC9596525 DOI: 10.1007/s11864-022-01006-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Melanoma is caused by a variety of somatic mutations, and among these mutations, BRAF mutation occurs most frequently and has routinely been evaluated as a critical diagnostic biomarker in clinical practice. The introduction of targeted agents for BRAF-mutant melanoma has significantly improved overall survival in a large proportion of patients. However, there is BRAF inhibitor resistance in most patients, and its mechanisms are complicated and need further clarification. Additionally, treatment approaches to overcome resistance have evolved rapidly, shifting from monotherapy to multimodality treatment, which has dramatically improved patient outcomes in clinical trials and practice. This review highlights the mechanisms of BRAF inhibitor resistance in melanoma and discusses the current state of its therapeutic approaches that can be further explored in clinical practice.
Collapse
Affiliation(s)
- Jingqin Zhong
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wangjun Yan
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Chunmeng Wang
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wanlin Liu
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Xinyi Lin
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Zijian Zou
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Wei Sun
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| | - Yong Chen
- grid.452404.30000 0004 1808 0942Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, Shanghai, China
| |
Collapse
|
13
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
14
|
Xiao Y, Xia Y, Wang Y, Xue C. Pathogenic roles of long noncoding RNAs in melanoma: Implications in diagnosis and therapies. Genes Dis 2021; 10:113-125. [PMID: 37013035 PMCID: PMC10066279 DOI: 10.1016/j.gendis.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most dangerous types of cutaneous neoplasms, which are pigment-producing cells of neuroectodermal origin found all over the body. A great deal of research is focused on the mechanisms of melanoma to promote better diagnostic and treatment options for melanoma in its advanced stages. The progression of melanoma involves alteration in different levels of gene expression. With the successful implementation of next-generation sequencing technology, an increasing number of long noncoding RNAs (lncRNAs) sequences have been discovered, and a significant number of them have phenotypic effects in both in vitro and in vivo studies, implying that they play an important role in the occurrence and progression of human cancers, particularly melanoma. A number of evidence indicated that lncRNAs are important regulators in tumor cell proliferation, invasion, apoptosis, immune escape, energy metabolism, drug resistance, epigenetic regulation. To better understand the role of lncRNAs in melanoma tumorigenesis, we categorize melanoma-associated lncRNAs according to their cellular functions and associations with gene expression and signaling pathways in this review. Based on the mechanisms of lncRNA, we discuss the possibility of lncRNA-target treatments, and the application of liquid biopsies to detect lncRNAs in melanoma diagnosis and prognosis.
Collapse
|
15
|
De Falco V, Napolitano S, Esposito D, Guerrera LP, Ciardiello D, Formisano L, Troiani T. Comprehensive Review on the Clinical Relevance of Long Non-Coding RNAs in Cutaneous Melanoma. Int J Mol Sci 2021; 22:1166. [PMID: 33503876 PMCID: PMC7865742 DOI: 10.3390/ijms22031166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is considered a rare tumor, although it is one of the most common cancers in young adults and its incidence has risen in the last decades. Targeted therapy, with BRAF and MEK inhibitors, and immunotherapy revolutionized the treatment of metastatic melanoma but there is still a considerable percentage of patients with primary or acquired resistance to these therapies. Recently, oncology researchers directed their attention at the role of long non-coding RNAs (lncRNAs) in different types of cancers, including melanoma. lncRNAs are RNA transcripts, initially considered "junk sequences", that have been proven to have a crucial role in the fine regulation of physiological and pathological processes of different tissues. Furthermore, they are more expressed in tumors than protein-coding genes, constituting perfect candidates either as biomarkers (diagnostic, prognostic, predictive) or as therapeutic targets. In this work, we reviewed all the literature available for lncRNA in melanoma, elucidating all the potential roles in this tumor.
Collapse
Affiliation(s)
- Vincenzo De Falco
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Stefania Napolitano
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Luigi Pio Guerrera
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Davide Ciardiello
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Napoli, Italy; (D.E.); (L.F.)
| | - Teresa Troiani
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80131 Napoli, Italy; (V.D.F.); (S.N.); (L.P.G.); (D.C.)
| |
Collapse
|