1
|
Chérouvrier Hansson V, Cheng F, Georgolopoulos G, Mani K. Dichotomous Effects of Glypican-4 on Cancer Progression and Its Crosstalk with Oncogenes. Int J Mol Sci 2024; 25:3945. [PMID: 38612755 PMCID: PMC11012302 DOI: 10.3390/ijms25073945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Glypicans are linked to various aspects of neoplastic behavior, and their therapeutic value has been proposed in different cancers. Here, we have systematically assessed the impact of GPC4 on cancer progression through functional genomics and transcriptomic analyses across a broad range of cancers. Survival analysis using TCGA cancer patient data reveals divergent effects of GPC4 expression across various cancer types, revealing elevated GPC4 expression levels to be associated with both poor and favorable prognoses in a cancer-dependent manner. Detailed investigation of the role of GPC4 in glioblastoma and non-small cell lung adenocarcinoma by genetic perturbation studies displays opposing effects on these cancers, where the knockout of GPC4 with CRISPR/Cas9 attenuated proliferation of glioblastoma and augmented proliferation of lung adenocarcinoma cells and the overexpression of GPC4 exhibited a significant and opposite effect. Further, the overexpression of GPC4 in GPC4-knocked-down glioblastoma cells restored the proliferation, indicating its mitogenic effect in this cancer type. Additionally, a survival analysis of TCGA patient data substantiated these findings, revealing an association between elevated levels of GPC4 and a poor prognosis in glioblastoma, while indicating a favorable outcome in lung carcinoma patients. Finally, through transcriptomic analysis, we attempted to assign mechanisms of action to GPC4, as we find it implicated in cell cycle control and survival core pathways. The analysis revealed upregulation of oncogenes, including FGF5, TGF-β superfamily members, and ITGA-5 in glioblastoma, which were downregulated in lung adenocarcinoma patients. Our findings illuminate the pleiotropic effect of GPC4 in cancer, underscoring its potential as a putative prognostic biomarker and indicating its therapeutic implications in a cancer type dependent manner.
Collapse
Affiliation(s)
- Victor Chérouvrier Hansson
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden; (V.C.H.); (F.C.)
| | - Fang Cheng
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden; (V.C.H.); (F.C.)
| | | | - Katrin Mani
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden; (V.C.H.); (F.C.)
| |
Collapse
|
2
|
Hilwi M, Shulman K, Naroditsky I, Feld S, Gross-Cohen M, Boyango I, Soboh S, Vornicova O, Farhoud M, Singh P, Bar-Sela G, Goldberg H, Götte M, Sharrocks AD, Li Y, Sanderson RD, Ilan N, Vlodavsky I. Nuclear localization of heparanase 2 (Hpa2) attenuates breast carcinoma growth and metastasis. Cell Death Dis 2024; 15:232. [PMID: 38519456 PMCID: PMC10959965 DOI: 10.1038/s41419-024-06596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Unlike the intense research effort devoted to exploring the significance of heparanase in cancer, very little attention was given to Hpa2, a close homolog of heparanase. Here, we explored the role of Hpa2 in breast cancer. Unexpectedly, we found that patients endowed with high levels of Hpa2 exhibited a higher incidence of tumor metastasis and survived less than patients with low levels of Hpa2. Immunohistochemical examination revealed that in normal breast tissue, Hpa2 localizes primarily in the cell nucleus. In striking contrast, in breast carcinoma, Hpa2 expression is not only decreased but also loses its nuclear localization and appears diffuse in the cell cytoplasm. Importantly, breast cancer patients in which nuclear localization of Hpa2 is retained exhibited reduced lymph-node metastasis, suggesting that nuclear localization of Hpa2 plays a protective role in breast cancer progression. To examine this possibility, we engineered a gene construct that directs Hpa2 to the cell nucleus (Hpa2-Nuc). Notably, overexpression of Hpa2 in breast carcinoma cells resulted in bigger tumors, whereas targeting Hpa2 to the cell nucleus attenuated tumor growth and tumor metastasis. RNAseq analysis was performed to reveal differentially expressed genes (DEG) in Hpa2-Nuc tumors vs. control. The analysis revealed, among others, decreased expression of genes associated with the hallmark of Kras, beta-catenin, and TNF-alpha (via NFkB) signaling. Our results imply that nuclear localization of Hpa2 prominently regulates gene transcription, resulting in attenuation of breast tumorigenesis. Thus, nuclear Hpa2 may be used as a predictive parameter in personalized medicine for breast cancer patients.
Collapse
Affiliation(s)
- Maram Hilwi
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Inna Naroditsky
- Departments of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Sari Feld
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ilanit Boyango
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Soaad Soboh
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Olga Vornicova
- Department of Oncology, Ha'amek Medical Center, Afula, Israel
| | - Malik Farhoud
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Preeti Singh
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Gil Bar-Sela
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Oncology, Ha'amek Medical Center, Afula, Israel
| | | | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Muenster, Germany
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Yaoyong Li
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
3
|
Cheng F, Hansson VC, Georgolopoulos G, Mani K. Attenuation of cancer proliferation by suppression of glypican-1 and its pleiotropic effects in neoplastic behavior. Oncotarget 2023; 14:219-235. [PMID: 36944188 PMCID: PMC10030152 DOI: 10.18632/oncotarget.28388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Glypicans (GPC1-6) are associated with tumorigenic processes and their involvement in neoplastic behavior has been discussed in different cancer types. Here, a cancer-wide GPC expression study, using clinical cancer patient data in The Cancer Genome Atlas, reveals net upregulation of GPC1 and GPC2 in primary solid tumors, whereas GPC3, GPC5 and GPC6 display lowered expression pattern compared to normal tissues. Focusing on GPC1, survival analyses of the clinical cancer patient data reveal statistically significant correlation between high expression of GPC1 and poor prognosis in 10 particular cancer types i.e., bladder urothelial carcinoma, brain lower grade glioma, liver hepatocellular carcinoma, colon adenocarcinoma, kidney renal clear cell carcinoma, lung adenocarcinoma, mesothelioma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma and uveal melanoma. In vitro studies targeting GPC1 expression by CRISPR/Cas9 or siRNA or treatment with an anti-GPC1 antibody resulted in attenuation of proliferation of cancer cells from bladder carcinoma, glioma and hepatocellular carcinoma patients (T24, U87 and HepG2 cells). Further, overexpression of GPC1 exhibited a significant and negative correlation between GPC1 expression and proliferation of T24 cells. Attempt to reveal the mechanism through which downregulation of GPC1 leads to attenuation of tumor growth using systematic Ingenuity Pathway Analysis indicate that suppression of GPC1 results in ECM-mediated inhibition of specific pro-cancer signaling pathways involving TGF-β and p38 MAPK. Identified differential expression and pleiotropic effects of GPCs in specific cancer types emphasize their potential of as novel diagnostic tools and prognostic factors and open doors for future GPC targeted therapy.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| | - Victor Chérouvrier Hansson
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| | | | - Katrin Mani
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| |
Collapse
|
4
|
Glypican-3 Differentiates Intraductal Carcinoma and Paget's Disease from Other Types of Breast Cancer. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010086. [PMID: 36676710 PMCID: PMC9862536 DOI: 10.3390/medicina59010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Background and Objectives: breast cancer remains the most common health burden affecting females worldwide. Despite developments in breast cancer diagnostic approaches and treatment strategies, the clinical management of metastatic breast cancer remains challenging. Thus, there is a need to identify new biomarkers and novel drug targets for breast cancer diagnosis and therapy. Recently, aberrant glypican-3 (GPC3) expression in cancers has gained considerable interest in cancer research. The studies, however, have yielded contradictory results about GPC3 expression in breast cancer. Therefore, the current study aims to analyse GPC3 expression across a large panel of different breast cancer subtypes. Materials and Methods: GPC3 expression was immunohistochemically evaluated in 230 breast cancer patients along with eight normal tissues and its associations to clinical and demographic characteristics, as well as immunohistochemical biomarkers for breast cancer. Moreover, a public database consisting of breast cancer patients' survival data and GPC3 gene expression information was used to assess the prognostic value of GPC3 in the survival of breast cancer patients. Results: GPC3 expression was only characterised in 7.5% of different histological breast cancer subtypes. None of the normal breast tissues displayed GPC3 expression. Interestingly, all cases of Paget's disease, as well as 42.9% of intraductal and 16.7% of mucinous carcinomas were found to have GPC3 expression, where it was able to significantly discriminate Paget's disease and intraductal carcinoma from other breast cancer subtypes. Importantly, GPC3 expression was found more often in tumours that tested positive for the expression of hormone receptors and human epidermal growth factor receptor 2 (HER2), indicating more favourable histological subtypes of breast cancer. Consequently, longer relapse-free survival (RFS) was significantly correlated with higher GPC3 mRNA expression. Conclusions: Our study proposes that GPC3 is a promising breast cancer subtype-specific biomarker. Moreover, GPC3 may have the potential to be a molecular target for the development of new therapeutics for specific subtypes of breast cancer.
Collapse
|
5
|
Zhao J, Guo M, Song Y, Liu S, Liao R, Zhang Y, Zhang Y, Yang Q, Gu Y, Huang X. Serum exosomal and serum glypican-1 are associated with early recurrence of pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:992929. [PMID: 36313694 PMCID: PMC9614098 DOI: 10.3389/fonc.2022.992929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background The diagnostic performance and prognostic value of serum exosomal glypican 1 (GPC-1) in pancreatic ductal adenocarcinoma (PDAC) remain controversial. In this study, we detected serum exosomal GPC-1 using enzyme-linked immunosorbent assay (ELISA) and determined whether it serves as a predictor of diagnosis and recurrence for early-stage PDAC. Methods Serum samples were obtained from patients with 50 PDAC, 6 benign pancreatic tumor (BPT), or 9 chronic pancreatitis (CP) and 50 healthy controls (HCs). Serum exosomes were isolated using an exosome isolation kit. Exosomal and serum GPC-1 levels were measured using ELISA. The freeze–thaw process was carried out to analyze the stability of GPC-1. Receiver operating characteristic (ROC) analysis was employed to assess the diagnostic value of GPC-1. Kaplan–Meier and multivariate Cox analyses were used to evaluate the prognostic value of GPC-1. Results The average concentrations of serum exosomal and serum GPC-1 were 1.5 and 0.8 ng/ml, respectively. GPC-1 expression levels were stable under repeated freezing and thawing (d1-5 freeze–thaw cycles vs. d0 P > 0.05). Serum exosomal and serum GPC-1 were significantly elevated in patients with PDAC compared with HCs (P < 0.0001) but were slightly higher compared with that in patients with CP and BPT (P > 0.05). The expression levels of exosomal and serum GPC-1 were elevated 5 days after surgery in patients with PDAC, CP, and BPT (P < 0.05). Patients with high levels of exosomal and serum GPC-1 had a shorter relapse-free survival (RFS) (P = 0.006, and P = 0.010). Multivariate analyses showed that serum exosomal and serum GPC-1 were independent prognostic indicators for early RFS (P = 0.008, and P = 0.041). Conclusion ELISA is an effective and sensitive method to detect exosomal and serum GPC-1. The detection of GPC-1 was stable under repeated freezing and thawing cycles and could distinguish early-stage PDAC from HCs but not CP and BPT. Exosomal and serum GPC-1 may be good independent predictors of early recurrence in early-stage PDAC.
Collapse
Affiliation(s)
- Juan Zhao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Madi Guo
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yushuai Song
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shan Liu
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ran Liao
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yumin Zhang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Yang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanlong Gu
- Department of interventional oncology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Xiaoyi Huang,
| |
Collapse
|
6
|
Riecks J, Parnigoni A, Győrffy B, Kiesel L, Passi A, Vigetti D, Götte M. The hyaluronan-related genes HAS2, HYAL1-4, PH20 and HYALP1 are associated with prognosis, cell viability and spheroid formation capacity in ovarian cancer. J Cancer Res Clin Oncol 2022; 148:3399-3419. [PMID: 35767191 PMCID: PMC9587083 DOI: 10.1007/s00432-022-04127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Purpose Hyaluronan modulates tumour progression, including cell adhesion, cohesion, proliferation and invasion, and the cancer stem cell phenotype. In ovarian cancer, high levels of stromal hyaluronan are associated with poor prognosis. In this work, hyaluronan synthases (HAS1-3) and hyaluronidases (HYAL1-4, PH-20, HYALP1) were examined with regard to different levels of gene expression and its influence on ovarian cancer patients’ survival. The impact of a siRNA depletion of HAS2 was investigated in vitro. Methods Using the Kaplan–Meier Plotter tool, we investigated the influence of hyaluronic synthases and hyaluronidases on the survival of a collective of 1435 ovarian cancer patients. Differences in gene expression between normal (n = 46) and cancerous (n = 744) ovarian tissue were examined using the TNMplot database. Following an evaluation of hyaluronan-related gene expression in the ATCC ovarian cancer panel, we studied SKOV3 and SW 626 ovarian cancer cells subjected to HAS2 siRNA or control siRNA treatment in terms of HAS1-3, HYAL2 and HYAL3 mRNA expression. We investigated the ability to form spheroids using the Hanging Drop method and the response to chemotherapy at different concentrations using the MTT Assay. By STRING analysis, interactions within the enzymes of the hyaluronic acid system and with binding partners were visualized. Results HAS1, HYAL1 and HYAL4 mRNA expression is significantly upregulated, whereas HAS2, HYAL2 and HYAL3 mRNA expression is significantly downregulated in ovarian cancer tissue compared to controls. HAS2 improves cell viability, the capability to form tumour spheroids and has a negative prognostic value regarding overall survival. Lower HAS2 expression and high expression of HYAL2 and HYAL3 favours the survival of ovarian cancer patients. HAS2 knockdown cells and control cells showed a moderate response to combinatorial in vitro chemotherapy with taxol and cisplatin. Conclusion In conclusion, our study shows that the hyaluronic acid system has a relevant influence on the survival of ovarian cancer patients and could therefore be considered as a possible prognostic factor.
Collapse
Affiliation(s)
- Jette Riecks
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Arianna Parnigoni
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, 11, 48149, Münster, Germany.
| |
Collapse
|
7
|
GPC1 promotes the growth and migration of colorectal cancer cells through regulating the TGF-β1/SMAD2 signaling pathway. PLoS One 2022; 17:e0269094. [PMID: 35671267 PMCID: PMC9173621 DOI: 10.1371/journal.pone.0269094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 05/14/2022] [Indexed: 11/20/2022] Open
Abstract
In this study, we analyzed GPC family genes in colorectal cancer (CRC) and the possible mechanism of action of GPC1 in CRC. CRC patient data were extracted from The Cancer Genome Atlas, and the prognostic significance of GPC1 expression and its association with clinicopathological features were identified by Kolmogorov–Smirnov test. CRC patients with high GPC1 expression had poor overall survival compared with patients with low GPC1 expression. In vitro experiments demonstrated that knockdown of GPC1 significantly inhibited the proliferation and migration and promoted cell apoptosis in CRC cell lines. Gene Ontology analysis of differential genes indicated that GPC1 may influence the TGF-β1 signaling pathway. Additional experiments revealed that silencing GPC1 suppressed the levels of TGF-β1 and p-SMAD2 but increased the expression of SMAD2. Taken together, these findings suggest that GPC1 may function as a tumor promoter in CRC cells through promoting TGF-β signaling pathway. Our results also indicate that GPC1 may serve as a critical effector in CRC progression and a new potential target for CRC therapy.
Collapse
|
8
|
A Novel Prognostic Four-Gene Signature of Breast Cancer Identified by Integrated Bioinformatics Analysis. DISEASE MARKERS 2022; 2022:5925982. [PMID: 35265226 PMCID: PMC8898848 DOI: 10.1155/2022/5925982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/20/2022]
Abstract
Molecular analysis facilitates the prediction of overall survival (OS) of breast cancer and decision-making of the treatment plan. The current study was designed to identify new prognostic genes for breast cancer and construct an effective prognostic signature with integrated bioinformatics analysis. Differentially expressed genes in breast cancer samples from The Cancer Genome Atlas (TCGA) dataset were filtered by univariate Cox regression analysis. The prognostic model was optimized by the Akaike information criterion and further validated using the TCGA dataset (n = 1014) and Gene Expression Omnibus (GEO) dataset (n = 307). The correlation between the risk score and clinical information was assessed by univariate and multivariate Cox regression analyses. Functional pathways in relation to high-risk and low-risk groups were analyzed using gene set enrichment analysis (GSEA). Four prognostic genes (EXOC6, GPC6, PCK2, and NFATC2) were screened and used to construct a prognostic model, which showed robust performance in classifying the high-risk and low-risk groups. The risk score was significantly related to clinical features and OS. We identified 19 functional pathways significantly associated with the risk score. This study constructed a new prognostic model with a high prediction performance for breast cancer. The four-gene prognostic signature could serve as an effective tool to predict prognosis and assist the management of breast cancer patients.
Collapse
|
9
|
Ghosh S, Huda P, Fletcher N, Campbell D, Thurecht KJ, Walsh B. Clinical development of an anti-GPC-1 antibody for the treatment of cancer. Expert Opin Biol Ther 2022; 22:603-613. [DOI: 10.1080/14712598.2022.2033204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Fletcher
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | | | - Kristofer J. Thurecht
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|