1
|
Liu X, Liu S, Jin X, Liu H, Sun K, Wang X, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. An encounter between metal ions and natural products: natural products-coordinated metal ions for the diagnosis and treatment of tumors. J Nanobiotechnology 2024; 22:726. [PMID: 39574109 PMCID: PMC11580416 DOI: 10.1186/s12951-024-02981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Natural products-coordinated metal ions to form the nanomedicines are in the spotlight for cancer therapy. Some natural products could be coordinated with metal ions forming nanomedicines via simple and green environmental self-assembly, which not only improved the bioavailability of natural products, but also conferred multiple therapeutic modalities and multimodal imaging. On the one hand, in the weak acidity, glutathione (GSH) and hydrogen peroxide (H2O2) overexpression of tumor microenvironment (TME), such carrier-free nanomedicines could be further enhanced the therapeutic effect via optimizing the species of metal ions. On the other hand, nanomedicines could exert the precise treatment of tumor under the guidance of multiple imaging. Hence, this review summarized the research progress in recent years on the application of natural product-coordinated metal ions in cancer therapy. In addition, the prospects and challenges for the application of natural product-coordinated metal ions were discussed, especially how to improve targeting ability and stability and assess the safety of metal ions, so as to facilitate the clinical translation and application of natural product-coordinated metal ions nanomedicines.
Collapse
Affiliation(s)
- Xinyue Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Suyi Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haifan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kunhui Sun
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiongqin Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Tian W, Zhong W, Yang Z, Chen L, Lin S, Li Y, Wang Y, Yang P, Long X. Synthesis, characterization and discovery of multiple anticancer mechanisms of dibutyltin complexes based on salen-like ligands. J Inorg Biochem 2024; 251:112434. [PMID: 38029537 DOI: 10.1016/j.jinorgbio.2023.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
A series of novel dibutyltin complexes based on salen-like ligands (S01-S03) were synthesized and characterized using ultraviolet-visible spectra,infrared spectra, 1H, 13C, and 119Sn nuclear magnetic resonance, high-resolution mass spectrometry, X-ray crystallography, and thermogravimetric analysis. Complex S03 had excellent anticancer activity in vitro (IC50 = 1.5 ± 0.2 μM in CAL-27 cell lines), which highly activated ROS expression levels and induced apoptosis and cell cycle arrest at the G2/M phase. Interestingly, complex S03 induced cancer cell death through multiple mechanisms (mitochondrial pathway, ER-stress pathway, and DNA damage pathway). This study reveals new mechanisms of organotin complexes and provides new insights into the development of organotin metal complexes as anticancer drugs in the future, and compounds with multiple anticancer mechanisms may be a new strategy for delaying or overcoming drug resistance to chemotherapy and target therapy.
Collapse
Affiliation(s)
- Wei Tian
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China.
| | - Wen Zhong
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Zengyan Yang
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Ling Chen
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Shijie Lin
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Yanping Li
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Yuxing Wang
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| | - Peilin Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xing Long
- Guangxi International Zhuang Medicine Hospital, Nanning 530201, China; Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530201, China; Guangxi Institute of Ethnic Medicine, Nanning 530201, China
| |
Collapse
|
3
|
Ahrweiler-Sawaryn MC, Biswas A, Frias C, Frias J, Wilke NL, Wilke N, Berkessel A, Prokop A. Novel gold(I) complexes induce apoptosis in leukemia cells via the ROS-induced mitochondrial pathway with an upregulation of Harakiri and overcome multi drug resistances in leukemia and lymphoma cells and sensitize drug resistant tumor cells to apoptosis in vitro. Biomed Pharmacother 2023; 161:114507. [PMID: 36958194 DOI: 10.1016/j.biopha.2023.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Gold complexes could be promising for tumor therapy because of their cytotoxic and cytostatic properties. We present novel gold(I) complexes and clarify whether they also show antitumor activity by studying apoptosis induction in different tumor cell lines in vitro, comparing the compounds on resistant cells and analyzing the mechanism of action. We particularly highlight one gold complex that shows cytostatic and cytotoxic effects on leukemia and lymphoma cells already in the nanomolar range, induces apoptosis via the intrinsic signaling pathway, and plays a role in the production of reactive oxygen species. Furthermore, not only did we demonstrate a large number of resistance overcomes on resistant cell lines, but some of these cell lines were significantly more sensitive to the new gold compound. Our results show promising properties for the gold compound as anti-tumor drug and suggest that it can subvert resistance mechanisms and thus targets resistant cells for killing.
Collapse
Affiliation(s)
- Marie-C Ahrweiler-Sawaryn
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany; Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany.
| | - Animesh Biswas
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Corazon Frias
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany; Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
| | - Jerico Frias
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany; Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
| | - Nicola L Wilke
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany; Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
| | - Nathalie Wilke
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany; Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany
| | - Albrecht Berkessel
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstrasse 4, 50939 Cologne, Germany
| | - Aram Prokop
- Department of Pediatric Hematology/Oncology, Helios Clinic Schwerin, Wismarsche Straße 393-397, 19055 Schwerin, Germany; Department of Pediatric Hematology/Oncology, Children's Hospital Cologne, Amsterdamer Straße 59, 50735 Cologne, Germany; Department of Research, Medical School Hamburg (MSH), University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457, Germany
| |
Collapse
|
4
|
Synthesis and cytotoxic activity of new hexaazadibenzotetracenes derived from trans-1,2-diaminocyclohexane. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Rakhimova EB, Kirsanov VY, Ibragimov AG. One-Pot Synthesis of 2,9-Bis(halophenyl)-Substituted Perhydrohexaazadibenzotetracenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|