1
|
Trager MH, Gordon ER, Breneman A, Weng C, Samie FH. Artificial intelligence for nonmelanoma skin cancer. Clin Dermatol 2024; 42:466-476. [PMID: 38925444 DOI: 10.1016/j.clindermatol.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Nonmelanoma skin cancers (NMSCs) are among the top five most common cancers globally. NMSC is an area with great potential for novel application of diagnostic tools including artificial intelligence (AI). In this scoping review, we aimed to describe the applications of AI in the diagnosis and treatment of NMSC. Twenty-nine publications described AI applications to dermatopathology including lesion classification and margin assessment. Twenty-five publications discussed AI use in clinical image analysis, showing that algorithms are not superior to dermatologists and may rely on unbalanced, nonrepresentative, and nontransparent training data sets. Sixteen publications described the use of AI in cutaneous surgery for NMSC including use in margin assessment during excisions and Mohs surgery, as well as predicting procedural complexity. Eleven publications discussed spectroscopy, confocal microscopy, thermography, and the AI algorithms that analyze and interpret their data. Ten publications pertained to AI applications for the discovery and use of NMSC biomarkers. Eight publications discussed the use of smartphones and AI, specifically how they enable clinicians and patients to have increased access to instant dermatologic assessments but with varying accuracies. Five publications discussed large language models and NMSC, including how they may facilitate or hinder patient education and medical decision-making. Three publications pertaining to the skin of color and AI for NMSC discussed concerns regarding limited diverse data sets for the training of convolutional neural networks. AI demonstrates tremendous potential to improve diagnosis, patient and clinician education, and management of NMSC. Despite excitement regarding AI, data sets are often not transparently reported, may include low-quality images, and may not include diverse skin types, limiting generalizability. AI may serve as a tool to increase access to dermatology services for patients in rural areas and save health care dollars. These benefits can only be achieved, however, with consideration of potential ethical costs.
Collapse
Affiliation(s)
- Megan H Trager
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily R Gordon
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alyssa Breneman
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Faramarz H Samie
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Angeline J, Siva Kailash A, Karthikeyan J, Karthika R, Saravanan V. Automated Prediction of Malignant Melanoma using Two-Stage Convolutional Neural Network. Arch Dermatol Res 2024; 316:275. [PMID: 38796546 DOI: 10.1007/s00403-024-03076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/22/2024] [Accepted: 04/26/2024] [Indexed: 05/28/2024]
Abstract
PURPOSE A skin lesion refers to an area of the skin that exhibits anomalous growth or distinctive visual characteristics compared to the surrounding skin. Benign skin lesions are noncancerous and generally pose no threat. These irregular skin growths can vary in appearance. On the other hand, malignant skin lesions correspond to skin cancer, which happens to be the most prevalent form of cancer in the United States. Skin cancer involves the unusual proliferation of skin cells anywhere on the body. The conventional method for detecting skin cancer is relatively more painful. METHODS This work involves the automated prediction of skin cancer and its types using two stage Convolutional Neural Network (CNN). The first stage of CNN extracts low level features and second stage extracts high level features. Feature selection is done using these two CNN and ABCD (Asymmetry, Border irregularity, Colour variation, and Diameter) technique. The features extracted from the two CNNs are fused with ABCD features and fed into classifiers for the final prediction. The classifiers employed in this work include ensemble learning methods such as gradient boosting and XG boost, as well as machine learning classifiers like decision trees and logistic regression. This methodology is evaluated using the International Skin Imaging Collaboration (ISIC) 2018 and 2019 dataset. RESULTS As a result, the first stage CNN which is used for creation of new dataset achieved an accuracy of 97.92%. Second stage CNN which is used for feature selection achieved an accuracy of 98.86%. Classification results are obtained for both with and without fusion of features. CONCLUSION Therefore, two stage prediction model achieved better results with feature fusion.
Collapse
Affiliation(s)
- J Angeline
- Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - A Siva Kailash
- Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - J Karthikeyan
- Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - R Karthika
- Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India.
| | | |
Collapse
|
3
|
Mashoudy KD, Perez SM, Nouri K. From diagnosis to intervention: a review of telemedicine's role in skin cancer care. Arch Dermatol Res 2024; 316:139. [PMID: 38696032 PMCID: PMC11065900 DOI: 10.1007/s00403-024-02884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024]
Abstract
Skin cancer treatment is a core aspect of dermatology that relies on accurate diagnosis and timely interventions. Teledermatology has emerged as a valuable asset across various stages of skin cancer care including triage, diagnosis, management, and surgical consultation. With the integration of traditional dermoscopy and store-and-forward technology, teledermatology facilitates the swift sharing of high-resolution images of suspicious skin lesions with consulting dermatologists all-over. Both live video conference and store-and-forward formats have played a pivotal role in bridging the care access gap between geographically isolated patients and dermatology providers. Notably, teledermatology demonstrates diagnostic accuracy rates that are often comparable to those achieved through traditional face-to-face consultations, underscoring its robust clinical utility. Technological advancements like artificial intelligence and reflectance confocal microscopy continue to enhance image quality and hold potential for increasing the diagnostic accuracy of virtual dermatologic care. While teledermatology serves as a valuable clinical tool for all patient populations including pediatric patients, it is not intended to fully replace in-person procedures like Mohs surgery and other necessary interventions. Nevertheless, its role in facilitating the evaluation of skin malignancies is gaining recognition within the dermatologic community and fostering high approval rates from patients due to its practicality and ability to provide timely access to specialized care.
Collapse
Affiliation(s)
- Kayla D Mashoudy
- University of Miami Miller School of Medicine, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA.
| | - Sofia M Perez
- University of Miami Miller School of Medicine, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA
| | - Keyvan Nouri
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1150 NW 14th Street, Miami, FL, 33136, USA
| |
Collapse
|
4
|
Shugar AL, Konger RL, Rohan CA, Travers JB, Kim YL. Mapping cutaneous field carcinogenesis of nonmelanoma skin cancer using mesoscopic imaging of pro-inflammation cues. Exp Dermatol 2024; 33:e15076. [PMID: 38610095 PMCID: PMC11034840 DOI: 10.1111/exd.15076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/24/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
Nonmelanoma skin cancers remain the most widely diagnosed types of cancers globally. Thus, for optimal patient management, it has become imperative that we focus our efforts on the detection and monitoring of cutaneous field carcinogenesis. The concept of field cancerization (or field carcinogenesis), introduced by Slaughter in 1953 in the context of oral cancer, suggests that invasive cancer may emerge from a molecularly and genetically altered field affecting a substantial area of underlying tissue including the skin. A carcinogenic field alteration, present in precancerous tissue over a relatively large area, is not easily detected by routine visualization. Conventional dermoscopy and microscopy imaging are often limited in assessing the entire carcinogenic landscape. Recent efforts have suggested the use of noninvasive mesoscopic (between microscopic and macroscopic) optical imaging methods that can detect chronic inflammatory features to identify pre-cancerous and cancerous angiogenic changes in tissue microenvironments. This concise review covers major types of mesoscopic optical imaging modalities capable of assessing pro-inflammatory cues by quantifying blood haemoglobin parameters and hemodynamics. Importantly, these imaging modalities demonstrate the ability to detect angiogenesis and inflammation associated with actinically damaged skin. Representative experimental preclinical and human clinical studies using these imaging methods provide biological and clinical relevance to cutaneous field carcinogenesis in altered tissue microenvironments in the apparently normal epidermis and dermis. Overall, mesoscopic optical imaging modalities assessing chronic inflammatory hyperemia can enhance the understanding of cutaneous field carcinogenesis, offer a window of intervention and monitoring for actinic keratoses and nonmelanoma skin cancers and maximise currently available treatment options.
Collapse
Affiliation(s)
- Andrea L. Shugar
- Department of Pharmacology & Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
| | - Raymond L. Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pathology, Richard L. Roudebush Veterans Administration Hospital, Indianapolis, Indiana, USA
| | - Craig A. Rohan
- Department of Pharmacology & Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Medicine, Dayton Veterans Affairs Medical Center, Dayton, Ohio, USA
| | - Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, Ohio, USA
- Department of Medicine, Dayton Veterans Affairs Medical Center, Dayton, Ohio, USA
| | - Young L. Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Hermosilla P, Soto R, Vega E, Suazo C, Ponce J. Skin Cancer Detection and Classification Using Neural Network Algorithms: A Systematic Review. Diagnostics (Basel) 2024; 14:454. [PMID: 38396492 PMCID: PMC10888121 DOI: 10.3390/diagnostics14040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, there has been growing interest in the use of computer-assisted technology for early detection of skin cancer through the analysis of dermatoscopic images. However, the accuracy illustrated behind the state-of-the-art approaches depends on several factors, such as the quality of the images and the interpretation of the results by medical experts. This systematic review aims to critically assess the efficacy and challenges of this research field in order to explain the usability and limitations and highlight potential future lines of work for the scientific and clinical community. In this study, the analysis was carried out over 45 contemporary studies extracted from databases such as Web of Science and Scopus. Several computer vision techniques related to image and video processing for early skin cancer diagnosis were identified. In this context, the focus behind the process included the algorithms employed, result accuracy, and validation metrics. Thus, the results yielded significant advancements in cancer detection using deep learning and machine learning algorithms. Lastly, this review establishes a foundation for future research, highlighting potential contributions and opportunities to improve the effectiveness of skin cancer detection through machine learning.
Collapse
Affiliation(s)
- Pamela Hermosilla
- Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile (E.V.); (C.S.); (J.P.)
| | | | | | | | | |
Collapse
|
6
|
Foltz EA, Witkowski A, Becker AL, Latour E, Lim JY, Hamilton A, Ludzik J. Artificial Intelligence Applied to Non-Invasive Imaging Modalities in Identification of Nonmelanoma Skin Cancer: A Systematic Review. Cancers (Basel) 2024; 16:629. [PMID: 38339380 PMCID: PMC10854803 DOI: 10.3390/cancers16030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The objective of this study is to systematically analyze the current state of the literature regarding novel artificial intelligence (AI) machine learning models utilized in non-invasive imaging for the early detection of nonmelanoma skin cancers. Furthermore, we aimed to assess their potential clinical relevance by evaluating the accuracy, sensitivity, and specificity of each algorithm and assessing for the risk of bias. METHODS Two reviewers screened the MEDLINE, Cochrane, PubMed, and Embase databases for peer-reviewed studies that focused on AI-based skin cancer classification involving nonmelanoma skin cancers and were published between 2018 and 2023. The search terms included skin neoplasms, nonmelanoma, basal-cell carcinoma, squamous-cell carcinoma, diagnostic techniques and procedures, artificial intelligence, algorithms, computer systems, dermoscopy, reflectance confocal microscopy, and optical coherence tomography. Based on the search results, only studies that directly answered the review objectives were included and the efficacy measures for each were recorded. A QUADAS-2 risk assessment for bias in included studies was then conducted. RESULTS A total of 44 studies were included in our review; 40 utilizing dermoscopy, 3 using reflectance confocal microscopy (RCM), and 1 for hyperspectral epidermal imaging (HEI). The average accuracy of AI algorithms applied to all imaging modalities combined was 86.80%, with the same average for dermoscopy. Only one of the three studies applying AI to RCM measured accuracy, with a result of 87%. Accuracy was not measured in regard to AI based HEI interpretation. CONCLUSION AI algorithms exhibited an overall favorable performance in the diagnosis of nonmelanoma skin cancer via noninvasive imaging techniques. Ultimately, further research is needed to isolate pooled diagnostic accuracy for nonmelanoma skin cancers as many testing datasets also include melanoma and other pigmented lesions.
Collapse
Affiliation(s)
- Emilie A. Foltz
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97201, USA
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Alexander Witkowski
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Alyssa L. Becker
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97201, USA
- John A. Burns School of Medicine, University of Hawai’i at Manoa, Honolulu, HI 96813, USA
| | - Emile Latour
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jeong Youn Lim
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Andrew Hamilton
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Joanna Ludzik
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
7
|
Zhang C, Chen C, Chen C, Lv X. SMiT: symmetric mask transformer for disease severity detection. J Cancer Res Clin Oncol 2023; 149:16075-16086. [PMID: 37698681 DOI: 10.1007/s00432-023-05223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE The application of deep learning methods to the intelligent diagnosis of diseases has been the focus of intelligent medical research. When dealing with image classification tasks, if the lesion area is small and uneven, the background image involved in the training will affect the ultimate accuracy in determining the extent of the lesion. We did not follow the traditional approach of building an intelligent system to assist physicians in diagnosis from the perspective of CNN models, but instead proposed a pure transformer framework that can be used for diagnostic grading of pathological images. METHODS We propose a Symmetric Mask Pre-Training vision Transformer SMiT model for grading pathological cancer images. SMiT performs a symmetrically identical high probability sparsification of the input image token sequence at the first and last encoder layer positions to pre-train visual transformers, and the parameters of the baseline model are fine-tuned after loading the pre-training weights, allowing the model to concentrate more on extracting detailed features in the lesion region, effectively getting rid of the potential feature dependency problem. RESULTS SMiT achieved 92.8% classification accuracy on 4500 histopathological images of colorectal cancer processed by Gaussian filter denoising. We validated the effectiveness and generalizability of this study's methodology on the publicly available diabetic retinopathy dataset APTOS2019 from Kaggle and achieved quadratic Cohen Kappa, accuracy and F1-score of 91.9%, 86.91% and 72.85%, respectively, which were 1-2% better than previous studies based on CNN models. CONCLUSION SMiT uses a simpler strategy to achieve better results to assist physicians in making accurate clinical decisions, which can be an inspiration for making good use of the visual transformers in the field of medical imaging.
Collapse
Affiliation(s)
- Chengsheng Zhang
- The College of Software, Xinjiang University, Urumqi, 830046, China
| | - Cheng Chen
- The College of Software, Xinjiang University, Urumqi, 830046, China.
| | - Chen Chen
- The College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Xiaoyi Lv
- The College of Software, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
8
|
Viknesh CK, Kumar PN, Seetharaman R, Anitha D. Detection and Classification of Melanoma Skin Cancer Using Image Processing Technique. Diagnostics (Basel) 2023; 13:3313. [PMID: 37958209 PMCID: PMC10649387 DOI: 10.3390/diagnostics13213313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Human skin cancer is the most common and potentially life-threatening form of cancer. Melanoma skin cancer, in particular, exhibits a high mortality rate. Early detection is crucial for effective treatment. Traditionally, melanoma is detected through painful and time-consuming biopsies. This research introduces a computer-aided detection technique for early melanoma diagnosis-sis. In this study, we propose two methods for detecting skin cancer and focus specifically on melanoma cancerous cells using image data. The first method employs convolutional neural networks, including AlexNet, LeNet, and VGG-16 models, and we integrate the model with the highest accuracy into web and mobile applications. We also investigate the relationship between model depth and performance with varying dataset sizes. The second method uses support vector machines with a default RBF kernel, using feature parameters to categorize images as benign, malignant, or normal after image processing. The SVM classifier achieved an 86.6% classification accuracy, while the CNN maintained a 91% accuracy rate after 100 compute epochs. The CNN model is deployed as a web and mobile application with the assistance of Django and Android Studio.
Collapse
Affiliation(s)
- Chandran Kaushik Viknesh
- Department of Electronics and Communication Engineering, College of Engineering Guindy Campus, Anna University, Chennai 600025, India; (P.N.K.); (R.S.)
| | - Palanisamy Nirmal Kumar
- Department of Electronics and Communication Engineering, College of Engineering Guindy Campus, Anna University, Chennai 600025, India; (P.N.K.); (R.S.)
| | - Ramasamy Seetharaman
- Department of Electronics and Communication Engineering, College of Engineering Guindy Campus, Anna University, Chennai 600025, India; (P.N.K.); (R.S.)
| | - Devasahayam Anitha
- Department of Science and Humanities, Karpagam Institute of Technology, Coimbatore 641105, India;
| |
Collapse
|
9
|
Stafford H, Buell J, Chiang E, Ramesh U, Migden M, Nagarajan P, Amit M, Yaniv D. Non-Melanoma Skin Cancer Detection in the Age of Advanced Technology: A Review. Cancers (Basel) 2023; 15:3094. [PMID: 37370703 PMCID: PMC10295857 DOI: 10.3390/cancers15123094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Skin cancer is the most common cancer diagnosis in the United States, with approximately one in five Americans expected to be diagnosed within their lifetime. Non-melanoma skin cancer is the most prevalent type of skin cancer, and as cases rise globally, physicians need reliable tools for early detection. Artificial intelligence has gained substantial interest as a decision support tool in medicine, particularly in image analysis, where deep learning has proven to be an effective tool. Because specialties such as dermatology rely primarily on visual diagnoses, deep learning could have many diagnostic applications, including the diagnosis of skin cancer. Furthermore, with the advancement of mobile smartphones and their increasingly powerful cameras, deep learning technology could also be utilized in remote skin cancer screening applications. Ultimately, the available data for the detection and diagnosis of skin cancer using deep learning technology are promising, revealing sensitivity and specificity that are not inferior to those of trained dermatologists. Work is still needed to increase the clinical use of AI-based tools, but based on the current data and the attitudes of patients and physicians, deep learning technology could be used effectively as a clinical decision-making tool in collaboration with physicians to improve diagnostic efficiency and accuracy.
Collapse
Affiliation(s)
- Haleigh Stafford
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jane Buell
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elizabeth Chiang
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Uma Ramesh
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Migden
- Division of Internal Medicine, Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Moran Amit
- Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA;
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
10
|
Deniz-Garcia A, Fabelo H, Rodriguez-Almeida AJ, Zamora-Zamorano G, Castro-Fernandez M, Alberiche Ruano MDP, Solvoll T, Granja C, Schopf TR, Callico GM, Soguero-Ruiz C, Wägner AM. Quality, Usability, and Effectiveness of mHealth Apps and the Role of Artificial Intelligence: Current Scenario and Challenges. J Med Internet Res 2023; 25:e44030. [PMID: 37140973 PMCID: PMC10196903 DOI: 10.2196/44030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/19/2023] [Accepted: 03/10/2023] [Indexed: 03/12/2023] Open
Abstract
The use of artificial intelligence (AI) and big data in medicine has increased in recent years. Indeed, the use of AI in mobile health (mHealth) apps could considerably assist both individuals and health care professionals in the prevention and management of chronic diseases, in a person-centered manner. Nonetheless, there are several challenges that must be overcome to provide high-quality, usable, and effective mHealth apps. Here, we review the rationale and guidelines for the implementation of mHealth apps and the challenges regarding quality, usability, and user engagement and behavior change, with a special focus on the prevention and management of noncommunicable diseases. We suggest that a cocreation-based framework is the best method to address these challenges. Finally, we describe the current and future roles of AI in improving personalized medicine and provide recommendations for developing AI-based mHealth apps. We conclude that the implementation of AI and mHealth apps for routine clinical practice and remote health care will not be feasible until we overcome the main challenges regarding data privacy and security, quality assessment, and the reproducibility and uncertainty of AI results. Moreover, there is a lack of both standardized methods to measure the clinical outcomes of mHealth apps and techniques to encourage user engagement and behavior changes in the long term. We expect that in the near future, these obstacles will be overcome and that the ongoing European project, Watching the risk factors (WARIFA), will provide considerable advances in the implementation of AI-based mHealth apps for disease prevention and health promotion.
Collapse
Affiliation(s)
- Alejandro Deniz-Garcia
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Himar Fabelo
- Complejo Hospitalario Universitario Insular - Materno Infantil, Fundación Canaria Instituto de Investigación Sanitaria de Canarias, Las Palmas de Gran Canaria, Spain
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Antonio J Rodriguez-Almeida
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Garlene Zamora-Zamorano
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Castro-Fernandez
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Del Pino Alberiche Ruano
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Terje Solvoll
- Norwegian Centre for E-health Research, University Hospital of North-Norway, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Conceição Granja
- Norwegian Centre for E-health Research, University Hospital of North-Norway, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Thomas Roger Schopf
- Norwegian Centre for E-health Research, University Hospital of North-Norway, Tromsø, Norway
| | - Gustavo M Callico
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cristina Soguero-Ruiz
- Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Ana M Wägner
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
11
|
Sanchez K, Kamal K, Manjaly P, Ly S, Mostaghimi A. Clinical Application of Artificial Intelligence for Non-melanoma Skin Cancer. Curr Treat Options Oncol 2023; 24:373-379. [PMID: 36917395 PMCID: PMC10011774 DOI: 10.1007/s11864-023-01065-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 03/15/2023]
Abstract
OPINION STATEMENT The development and implementation of artificial intelligence is beginning to impact the care of dermatology patients. Although the clinical application of AI in dermatology to date has largely focused on melanoma, the prevalence of non-melanoma skin cancers, including basal cell and squamous cell cancers, is a critical application for this technology. The need for a timely diagnosis and treatment of skin cancers makes finding more time efficient diagnostic methods a top priority, and AI may help improve dermatologists' performance and facilitate care in the absence of dermatology expertise. Beyond diagnosis, for more severe cases, AI may help in predicting therapeutic response and replacing or reinforcing input from multidisciplinary teams. AI may also help in designing novel therapeutics. Despite this potential, enthusiasm in AI must be tempered by realistic expectations regarding performance. AI can only perform as well as the information that is used to train it, and development and implementation of new guidelines to improve transparency around training and performance of algorithms is key for promoting confidence in new systems. Special emphasis should be placed on the role of dermatologists in curating high-quality datasets that reflect a range of skin tones, diagnoses, and clinical scenarios. For ultimate success, dermatologists must not be wary of AI as a potential replacement for their expertise, but as a new tool to complement their diagnostic acumen and extend patient care.
Collapse
Affiliation(s)
- Katherine Sanchez
- Lake Erie College of Osteopathic Medicine, Erie, PA, USA.,Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
| | - Kanika Kamal
- Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Priya Manjaly
- Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA.,Boston University School of Medicine, Boston, USA
| | - Sophia Ly
- Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA.,College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, US, USA
| | - Arash Mostaghimi
- Department of Dermatology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Abdelhafeez A, Mohamed HK, Maher A, Khalil NA. A novel approach toward skin cancer classification through fused deep features and neutrosophic environment. Front Public Health 2023; 11:1123581. [PMID: 37139387 PMCID: PMC10150637 DOI: 10.3389/fpubh.2023.1123581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
Variations in the size and texture of melanoma make the classification procedure more complex in a computer-aided diagnostic (CAD) system. The research proposes an innovative hybrid deep learning-based layer-fusion and neutrosophic-set technique for identifying skin lesions. The off-the-shelf networks are examined to categorize eight types of skin lesions using transfer learning on International Skin Imaging Collaboration (ISIC) 2019 skin lesion datasets. The top two networks, which are GoogleNet and DarkNet, achieved an accuracy of 77.41 and 82.42%, respectively. The proposed method works in two successive stages: first, boosting the classification accuracy of the trained networks individually. A suggested feature fusion methodology is applied to enrich the extracted features' descriptive power, which promotes the accuracy to 79.2 and 84.5%, respectively. The second stage explores how to combine these networks for further improvement. The error-correcting output codes (ECOC) paradigm is utilized for constructing a set of well-trained true and false support vector machine (SVM) classifiers via fused DarkNet and GoogleNet feature maps, respectively. The ECOC's coding matrices are designed to train each true classifier and its opponent in a one-versus-other fashion. Consequently, contradictions between true and false classifiers in terms of their classification scores create an ambiguity zone quantified by the indeterminacy set. Recent neutrosophic techniques resolve this ambiguity to tilt the balance toward the correct skin cancer class. As a result, the classification score is increased to 85.74%, outperforming the recent proposals by an obvious step. The trained models alongside the implementation of the proposed single-valued neutrosophic sets (SVNSs) will be publicly available for aiding relevant research fields.
Collapse
Affiliation(s)
- Ahmed Abdelhafeez
- Faculty of Information Systems and Computer Science, October 6th University, Cairo, Egypt
- *Correspondence: Ahmed Abdelhafeez,
| | | | - Ali Maher
- Military Technical College, Cairo, Egypt
| | - Nariman A. Khalil
- Faculty of Information Systems and Computer Science, October 6th University, Cairo, Egypt
| |
Collapse
|