1
|
He S, He Y, Zhu S, Wang R, Liu S, Wang L, Shen X, Li X, Chen S, Fang J. M2 Macrophage exosomal HOXC13-AS in laryngeal cancer immunity via targeting miR-485-5p/IGF2BP2/PD-L1. Int Immunopharmacol 2024; 140:112742. [PMID: 39126735 DOI: 10.1016/j.intimp.2024.112742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
This study investigates the role of M2-exo-mediated HOXC13-AS in laryngeal squamous cell carcinoma (LSCC) by examining its transmission to tumor microenvironment (TME) macrophages. Exosomes from M2 macrophages were isolated and characterized using transmission electron microscopy, nanoparticle tracer analysis and western blot. Expression of HOXC13-AS, miR-485-5p, IGF2BP2, and PD-L1 was analyzed. Different interventions on LSCC cell function and immune escape were detected using molecular biological techniques. The study found that elevated HOXC13-AS were present in LSCC, and M2-exo expression was significantly increased in LSCC cells. Silencing HOXC13-AS in M2-exo inhibited LSCC malignant progression and immune escape in vivo and in vitro. M2-exo-mediated HOXC13-AS also regulated IGF2BP2 expression, impacting cellular biological function and immune escape process. The study concludes that M2-exo-mediated HOXC13-AS promotes LSCC malignancy and immune escape.
Collapse
Affiliation(s)
- Shizhi He
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University. Dongcheng District, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education. Dongcheng District, Beijing, China
| | - Yurong He
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University. Dongcheng District, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education. Dongcheng District, Beijing, China
| | - Siyu Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University. Dongcheng District, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education. Dongcheng District, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University. Dongcheng District, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education. Dongcheng District, Beijing, China
| | - Shaokun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University. Dongcheng District, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education. Dongcheng District, Beijing, China
| | - Lingwa Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University. Dongcheng District, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education. Dongcheng District, Beijing, China
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University. Dongcheng District, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education. Dongcheng District, Beijing, China
| | - Xinyu Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University. Dongcheng District, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education. Dongcheng District, Beijing, China
| | - Shaoshi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University. Dongcheng District, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education. Dongcheng District, Beijing, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University. Dongcheng District, Beijing, China; Key Laboratory of Otorhinolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education. Dongcheng District, Beijing, China.
| |
Collapse
|
2
|
Peng R, Jiang S, Jin Z. The potential mechanism of WT1-associated protein-induced N-6-methyladenosine modification of colony-stimulating factor 2 in the progression of oral squamous cell carcinoma by JAK/STAT3 pathway regulation. Eur J Oral Sci 2024; 132:e13001. [PMID: 38831514 DOI: 10.1111/eos.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
Colony-stimulating factor 2 (CSF2) plays a regulatory role in numerous cancers. However, there is needed to investigate the role of CSF2 in oral squamous cell carcinoma (OSCC) malignant phenotype and the specific mechanisms of CSF2 N-6-methyladenosine (m6A) modification. Therefore, we investigated the regulatory mechanism of m6A-modified CSF2 by WT1-associated protein (WTAP) in OSCC via qRT-PCR, western blot, WTAP and CSF2 overexpression in OSCC. In a panel of OSCCs, Kaplan-Meier plot analysis indicated that high expression of CSF2 was associated with poorer prognosis. Cell functional experiments revealed that enrichment of CSF2 promoted the proliferation and migration of OSCC cells by activating the JAK/STAT3 pathway, whereas the reduced expression of CSF2 resulted in the malignant decline of OSCC cells by blocking the JAK/STAT3 pathway. This study also confirmed that WTAP enhanced the m6A level of CSF2 and facilitated the expression of CSF2 and that CSF2 silencing blocked the invasive phenotype of OSCC cells and reversed the malignancy induced by WTAP overexpression. Overall, this study demonstrated that WTAP mediates the m6A modification of CSF2 and the JAK/STAT3 pathway, which plays an oncogenic role in the development of OSCC and can be a target for the treatment of patients with OSCC.
Collapse
Affiliation(s)
- Ruobing Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengjun Jiang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongzhi Jin
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Li YJ, Qiu YL, Li MR, Shen M, Zhang F, Shao JJ, Xu XF, Zhang ZL, Zheng SZ. New horizons for the role of RNA N6-methyladenosine modification in hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1130-1141. [PMID: 38195693 PMCID: PMC11130213 DOI: 10.1038/s41401-023-01214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancy, presenting a formidable challenge to the medical community owing to its intricate pathogenic mechanisms. Although current prevention, surveillance, early detection, diagnosis, and treatment have achieved some success in preventing HCC and controlling overall disease mortality, the imperative to explore novel treatment modalities for HCC remains increasingly urgent. Epigenetic modification has emerged as pivotal factors in the etiology of cancer. Among these, RNA N6-methyladenosine (m6A) modification stands out as one of the most prevalent, abundant, and evolutionarily conserved post-transcriptional alterations in eukaryotes. The literature underscores that the dynamic and reversible nature of m6A modifications orchestrates the intricate regulation of gene expression, thereby exerting a profound influence on cell destinies. Increasing evidence has substantiated conspicuous fluctuations in m6A modification levels throughout the progression of HCC. The deliberate modulation of m6A modification levels through molecular biology and pharmacological interventions has been demonstrated to exert a discernible impact on the pathogenesis of HCC. In this review, we elucidate the multifaceted biological functions of m6A modifications in HCC, and concurrently advancing novel therapeutic strategies for the management of this malignancy.
Collapse
Affiliation(s)
- Yu-Jia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang-Ling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng-Ran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Shen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiang-Juan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Fen Xu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zi-Li Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shi-Zhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Lu Y, Wang Y, Zhang L, Ma Z, Yu K, Shu Y, Zou X, Yang J, Liu X, Wang C, Du Y, Li Q. KAT7 enhances the proliferation and metastasis of head and neck squamous carcinoma by promoting the acetylation level of LDHA. Cancer Lett 2024; 590:216869. [PMID: 38593918 DOI: 10.1016/j.canlet.2024.216869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Lysine acetyltransferase 7 (KAT7), a histone acetyltransferase, has recently been identified as an oncoprotein and has been implicated in the development of various malignancies. However, its specific role in head and neck squamous carcinoma (HNSCC) has not been fully elucidated. Our study revealed that high expression of KAT7 in HNSCC patients is associated with poor survival prognosis and silencing KAT7 inhibits the Warburg effect, leading to reduced proliferation, invasion, and metastatic potential of HNSCC. Further investigation uncovered a link between the high expression of KAT7 in HNSCC and tumor-specific glycolytic metabolism. Notably, KAT7 positively regulates Lactate dehydrogenase A (LDHA), a key enzyme in metabolism, to promote lactate production and create a conducive environment for tumor proliferation and metastasis. Additionally, KAT7 enhances LDHA activity and upregulates LDHA protein expression by acetylating the lysine 118 site of LDHA. Treatment with WM3835, a KAT7 inhibitor, effectively suppressed the growth of subcutaneously implanted HNSCC cells in mice. In conclusion, our findings suggest that KAT7 exerts pro-cancer effects in HNSCC by acetylating LDHA and may serve as a potential therapeutic target. Inhibiting KAT7 or LDHA expression holds promise as a therapeutic strategy to suppress the growth and progression of HNSCC.
Collapse
Affiliation(s)
- Ying Lu
- School of Stomatology, Southern Medical University, Guang Zhou, 510515, China; Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yong Wang
- Department of Nuclear Medicine, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, 100071, China
| | - Leilei Zhang
- Department of Stomatology, 920th Hospital of the Joint Logistics Support Force, PLA, Kunming, 650032, China
| | - Zhaofeng Ma
- Department of Stomatology, Beijing Shunyi District Hospital, Beijing, 101300, China
| | - Kaitao Yu
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Yao Shu
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xuan Zou
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Jinjin Yang
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Xin Liu
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Chenglong Wang
- Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Qihong Li
- School of Stomatology, Southern Medical University, Guang Zhou, 510515, China; Department of Stomatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| |
Collapse
|
5
|
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM, Wang H. RNA modifications in cellular metabolism: implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther 2024; 9:70. [PMID: 38531882 DOI: 10.1038/s41392-024-01777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.
Collapse
Affiliation(s)
- Wei-Wei Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Clinical Medicine, Shandong University, Jinan, China
| | - Si-Qing Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Tian Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Yun-Fei Fei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Chen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Shuang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fei Wang
- Neurosurgical Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Guan-Min Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
6
|
Cai Y, Wang Y, Mao B, You Q, Guo X. Targeting insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) for the treatment of cancer. Eur J Med Chem 2024; 268:116241. [PMID: 38382391 DOI: 10.1016/j.ejmech.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) are RNA-binding proteins that regulate a variety of biological processes. In recent years, several studies have found that IGF2BPs play multiple roles in various biological processes, especially in cancer, and speculated on their mechanism of anticancer effect. In addition, targeting IGF2BPs or their downstream target gene has also received extensive attention as an effective treatment for different types of cancer. In this review, we summarized the recent progress on the role of IGF2BPs in cancers and their structural characteristics. We focused on describing the development of inhibitors targeting IGF2BPs and the prospects for further applications.
Collapse
Affiliation(s)
- Yuanqian Cai
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingzhe Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bingjie Mao
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Xie L, Liao J, Liu W, Wang R, Li X, Li W, Zhou Z. Gastrodin overcomes chemoresistance via inhibiting Skp2-mediated glycolysis. Cell Death Discov 2023; 9:364. [PMID: 37779163 PMCID: PMC10543462 DOI: 10.1038/s41420-023-01648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Aerobic glycolysis, a typical phenotype in human tumors, is associated with tumor progression and chemotherapy resistance. The present study demonstrated that cisplatin-resistant oral squamous cell carcinoma (OSCC) cells exerted a stronger glycolysis ability, which was associated with hexokinase 2 (HK2) overexpression. Additionally, the tumor growth of OSCC cells was delayed in vivo and the glycolysis was notably decreased following HK2 knockdown. The natural compound screening revealed that gastrodin could be an effective candidate for OSCC therapy since it inhibited HK2-mediated glucose metabolism and promoted endogenous OSCC cell apoptosis. Furthermore, gastrodin could bind to protein kinase B (Akt) and suppress its activity, thus downregulating HK2 at the transcriptional level. Additionally, S-phase kinase-associated protein 2 (Skp2) was highly expressed in OSCC cells, while K63-linked ubiquitination of Akt was inhibited in Skp2-depleted cisplatin-resistant OSCC cells. Gastrodin could also inhibit the cisplatin resistance of OSCC cells in vivo, particularly when combined with the Skp2 inhibitor, SZL P1-41. Overall, the aforementioned finding suggested that targeting the Skp2-Akt axis could be a potential therapeutic strategy for treating OSCC and overcoming chemoresistance.
Collapse
Affiliation(s)
- Li Xie
- Department of Head and Neck Surgery, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Zhongsu Zhou
- The Third Hospital of Changsha, Changsha, Hunan, 410015, China.
| |
Collapse
|
8
|
Xu K, Dai X, Yue J. m 6A methyltransferase KIAA1429 accelerates oral squamous cell carcinoma via regulating glycolysis and ferroptosis. Transl Oncol 2023; 36:101745. [PMID: 37517144 PMCID: PMC10407427 DOI: 10.1016/j.tranon.2023.101745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
N6-methyladenosine (m6A) modification acts as the most prevalent modification on eukaryotic RNA, and its function on oral squamous cell carcinoma (OSCC) is still unclear. Here, the present research aimed to explore the novel function of m6A methyltransferase KIAA1429 in OSCC. Results illustrated that KIAA1429 up-regulated in the OSCC samples and cells. Gain/loss functional assays demonstrated that KIAA1429 repressed the ferroptosis of OSCC. Moreover, KIAA1429 positively accelerated the aerobic glycolysis of OSCC, including glucose uptake, lactate production, ATP level and ECAR. Mechanistically, KIAA1429 could install the m6A modification on the PGK1 mRNA, thereby up-regulating the methylated m6A level. Moreover, m6A reader YTHDF1 recognized the m6A modification site of PGK1 mRNA and enhanced its mRNA stability. Thus, KIAA1429 promoted the OSCC aerobic glycolysis and inhibited the ferroptosis of OSCC through YTHDF1-mediated PGK1 mRNA stability. Taken together, these findings reveal a novel insight for KIAA1429 on OSCC via m6A-dependent manner.
Collapse
Affiliation(s)
- Ke Xu
- Department of Stomatology Clinic, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China.
| | - Xiaojuan Dai
- Department of Stomatology Clinic, Cangzhou Central Hospital, Cangzhou, Hebei 061000, China
| | - Jincheng Yue
- Cangzhou Hospital of Integrated TCM-WM Hebei, Cangzhou, Hebei 061000, China
| |
Collapse
|
9
|
Tang H, Zhao J, Liu J. Comprehensive analysis of the expression of the IGF2BPs gene family in head and neck squamous cell carcinoma: Association with prognostic value and tumor immunity. Heliyon 2023; 9:e20659. [PMID: 37842569 PMCID: PMC10568114 DOI: 10.1016/j.heliyon.2023.e20659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) represents a predominant type of cancer found in the head and neck region, characterized by a high incidence and unfavorable prognosis. The IGF2BPs gene family, which belongs to the RNA-binding protein class, has been critically implicated in several cancers, and its involvement in HNSCC necessitates further exploration. Objective To explore the clinical significance and potential biological functions of the IGF2BPs gene family in HNSCC. Methods A bioinformatic methodology was employed to examine the expression profile, diagnostic and prognostic significance, and biological mechanisms of the IGF2BPs gene family in HNSCC, with a particular emphasis on its involvement in the immune function of HNSCC. This was followed by in vitro investigations to unravel the biological roles of the IGF2BPs gene family in HNSCC. Results This investigation has demonstrated that, in contrast with normal control tissue, HNSCC has a substantial elevation in the expression level of the IGF2BPs gene family. Patients with a high level of IGF2BPs gene family expression demonstrated higher prediction accuracy for HNSCC. Furthermore, patients with HNSCC and elevated IGF2BPs gene family expression levels exhibited poor survival outcomes. The IGF2BPs gene family displayed a significant association with a variety of immune infiltrating cells and immune genes in HNSCC. Studies conducted in vitro have confirmed that IGF2BP2 silencing suppressed the migration, proliferation, and invasion of HNSCC cells. Conclusions It has been determined that the IGF2BPs gene family plays a crucial part in the onset and progression of HNSCC, and its association with tumor immunity has been established. The IGF2BPs gene family holds promising potential as a diagnostic and prognostic biomarker for HNSCC.
Collapse
Affiliation(s)
- Hai Tang
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, China
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, China
| | - Jingpeng Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
10
|
Shi SJ, Han DH, Zhang JL, Li Y, Yang AG, Zhang R. VIM‑AS1 promotes proliferation and drives enzalutamide resistance in prostate cancer via IGF2BP2‑mediated HMGCS1 mRNA stabilization. Int J Oncol 2023; 62:34. [PMID: 36734275 PMCID: PMC9911078 DOI: 10.3892/ijo.2023.5482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
VIM‑AS1, a cancer‑specific long non‑coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM‑AS1 in the proliferation and resistance to anti‑androgen therapy of LNCaP and C4‑2 prostate cancer cells remains to be determined. In the current study, gain‑and‑loss experiments were used to investigate the effects of VIM‑AS on the proliferation and anti‑androgen therapy of LNCaP and C4‑2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM‑AS1 driving prostate progression. It was demonstrated that VIM‑AS1 was upregulated in C4‑2 cells, an established castration‑resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone‑sensitive prostate cancer cell line. The present study further demonstrated that VIM‑AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM‑AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM‑AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4‑2 cells in vitro and in vivo. Mechanistically, 3‑hydroxy‑3‑methylglutaryl‑CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM‑AS1, and VIM‑AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM‑AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA‑protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM‑AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM‑AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM‑AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.
Collapse
Affiliation(s)
- Sheng-Jia Shi
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Department of Andrology, Reproduction Center, Northwest Women's and Children's Hospital, Xian Jiaotong University Health Science Center, Xi'an, Shaanxi 710004, P.R. China,Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Dong-Hui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Jing-Liang Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - Yu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710069, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, Xi'an, Shaanxi 710032, P.R. China,Correspondence to: Professor Rui Zhang or Professor An-Gang Yang, State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, 169 Changle West Road, Xi'an, Shaanxi 710032, P.R. China, E-mail: , E-mail:
| |
Collapse
|
11
|
Cui Y, Liu J, Liu L, Ma X, Gui Y, Liu H, Zhao W. m 6A-modified circFOXK2 targets GLUT1 to accelerate oral squamous cell carcinoma aerobic glycolysis. Cancer Gene Ther 2023; 30:163-171. [PMID: 36127411 DOI: 10.1038/s41417-022-00526-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023]
Abstract
N6-methyladenosine (m6A) is an abundant nucleotide modification in mRNA, and its emerging roles have been gradually identified. However, the potential function of m6A and m6A-modified circular RNA (circRNA) is still unclear. Here, m6A-circRNA epitranscriptomic microarray analysis revealed a high-expressed m6A-modified circFOXK2 (hsa_circ_0000816, from FOXK2 gene) in oral squamous cell carcinoma (OSCC). For the biofunctions of OSCC, results revealed that circFOXK2 promoted the malignant phenotypes of OSCC cells. Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) demonstrated that a remarkable m6A modified site was installed on glucose transporter 1 (GLUT1) mRNA. Mechanistically, circFOXK2 promoted the GLUT1 mRNA stability through cooperating with insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) in a m6A-dependent manner. In summary, the present study explored the oncogenic role of m6A-modified circFOXK2 in OSCC through the m6A-dependent IGF2BP3/GLUT1 axis, indicating a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yameng Cui
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Jingwen Liu
- The School and Hospital of Stomatology, Tianjin Medical University, 300070, Tianjin, China
| | - Lina Liu
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, NanKai University, 300041, Tianjin, China
| | - Xiaozhou Ma
- The School and Hospital of Stomatology, Tianjin Medical University, 300070, Tianjin, China
| | - Yu Gui
- The School and Hospital of Stomatology, Tianjin Medical University, 300070, Tianjin, China
| | - Hao Liu
- Department of Prosthodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, NanKai University, 300041, Tianjin, China.
| | - Wei Zhao
- The School and Hospital of Stomatology, Tianjin Medical University, 300070, Tianjin, China.
| |
Collapse
|