1
|
Chen L, Chao Y, Li W, Wu Z, Wang Q. Soluble immune checkpoint molecules in cancer risk, outcomes prediction, and therapeutic applications. Biomark Res 2024; 12:95. [PMID: 39218939 PMCID: PMC11368031 DOI: 10.1186/s40364-024-00647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
Immunotherapy has emerged as a pivotal modality in cancer treatment, with immune checkpoint inhibitors effectively combating malignancies by impeding crucial pathways within the immune system and stimulating patients' immune responses. Soluble forms of immune checkpoints exhibit a remarkable diversity and can be readily tracked in circulation, holding immense potential as biomarkers for cancer treatment. An increasing number of studies focused on soluble immune checkpoints in cancer have emerged thanks to technological advancements. In this systematic review, we comprehensively summarized the recent studies on soluble immune checkpoints in human cancer risk prediction, outcome prediction, therapeutic applications, and potential molecular mechanisms, which demonstrated the promising future of soluble immune checkpoints in clinical applications. The clinical relevance of soluble immune checkpoints has been recognized in multiple cancers, yet the therapeutic applications and mechanisms remain obscure. Interpreting the impacts and mechanisms of soluble immune checkpoints could shed a light on the novel strategies of cancer screening, treatments, and outcome prediction.
Collapse
Affiliation(s)
- Lin Chen
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuqing Chao
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Li
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhixia Wu
- Department of Service and Purchase, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, Zhejiang, PR China.
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Guo Y, Pan Y, Wan J, Gong B, Li Y, Kan X, Zheng C. Prognosis stratification of cancer patients treated with immune checkpoint inhibitors through lung immune prognostic index: a meta-analysis and systematic review. BMC Cancer 2024; 24:523. [PMID: 38664760 PMCID: PMC11047037 DOI: 10.1186/s12885-024-12271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Although numerous studies have reported the prognostic value of the lung immune prognostic index (LIPI) in non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs), the prognostic value of the LIPI in a pancancer setting remains unclear. METHODS A comprehensive search was conducted until July 2023 across the PubMed, Embase, Web of Science, and Cochrane Library databases to identify relevant studies evaluating the prognostic value of the LIPI in cancer patients treated with ICIs. The outcomes were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and disease control rate (DCR). We described and compared the pooled outcomes by stratifying the patients based on different groupings of LIPI (good vs. intermediate [0 vs. 1], good vs. poor [0 vs. 2], and good vs. intermediate / poor [0 vs. 1 + 2]). RESULTS A total of 9959 patients in 35 studies were included. A higher score of LIPI was associated with impaired OS. The pooled HRs were 1.69 (95% CI: 1.55-1.85, p < 0.001; 0 vs. 1), 3.03 (95% CI: 2.53-3.63, p < 0.001; 0 vs. 2), and 2.38 (95% CI: 1.97-2.88, p < 0.001; 0 vs. 1 + 2). A higher LIPI score was associated with shorter PFS. The pooled HRs were 1.41 (95% CI: 1.31-1.52, p < 0.001; 0 vs. 1), 2.23 (95% CI: 1.87-2.66, p < 0.001; 0 vs. 2), and 1.65 (95% CI: 1.46-1.86, p < 0.001; 0 vs. 1 + 2). Similarly, a higher LIPI score was associated with a lower ORR. The pooled ORs were 0.63 (95% CI: 0.54-0.75, p < 0.001; 0 vs. 1) and 0.38 (95% CI: 0.29-0.50, p < 0.001; 0 vs. 2). A higher LIPI score was associated with a lower DCR. The pooled ORs were 0.47 (95% CI: 0.35-0.61, p < 0.001; 0 vs. 1) and 0.19 (95% CI: 0.12-0.30, p < 0.001; 0 vs. 2). CONCLUSION In patients with NSCLC or other solid tumours, the lung immune prognostic index could robustly stratify the clinical outcomes into three groups among the patients who receive ICIs. LIPI is a low-cost, simple, accessible, and accurate prognostic tool in a pancancer setting and it may contribute to the evaluation of risk stratification in patients treated with ICIs.
Collapse
Affiliation(s)
- Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Yao Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Jiayu Wan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Bingxin Gong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Yi Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China.
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Key Laboratory of Molecular Imaging, 430022, Wuhan, China.
| |
Collapse
|
3
|
Liang Y, Maeda O, Ando Y. Biomarkers for immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Jpn J Clin Oncol 2024; 54:365-375. [PMID: 38183211 DOI: 10.1093/jjco/hyad184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Although immune checkpoint inhibitors have greatly improved cancer therapy, they also cause immune-related adverse events, including a wide range of inflammatory side effects resulting from excessive immune activation. Types of immune-related adverse events are diverse and can occur in almost any organ, with different frequencies and severities. Furthermore, immune-related adverse events may occur within the first few weeks after treatment or even several months after treatment discontinuation. Predictive biomarkers include blood cell counts and cell surface markers, serum proteins, autoantibodies, cytokines/chemokines, germline genetic variations and gene expression profiles, human leukocyte antigen genotype, microRNAs and the gut microbiome. Given the inconsistencies in research results and limited practical utility, there is to date no established biomarker that can be used in routine clinical practice, and additional investigations are essential to demonstrate efficacy and subsequently facilitate integration into routine clinical use.
Collapse
Affiliation(s)
- Yao Liang
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Osamu Maeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
4
|
Kitahara Y, Inoue Y, Yasui H, Karayama M, Suzuki Y, Hozumi H, Furuhashi K, Enomoto N, Fujisawa T, Funai K, Honda T, Misawa K, Miyake H, Takeuchi H, Inui N, Suda T. Pan-cancer assessment of antineoplastic therapy-induced interstitial lung disease in patients receiving subsequent therapy immediately following immune checkpoint blockade therapy. Respir Res 2024; 25:25. [PMID: 38200501 PMCID: PMC10777633 DOI: 10.1186/s12931-024-02683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Drug-induced interstitial lung disease (DIILD) is a serious adverse event potentially induced by any antineoplastic agent. Whether cancer patients are predisposed to a higher risk of DIILD after receiving immune checkpoint inhibitors (ICIs) is unknown. METHODS This study retrospectively assessed the cumulative incidence of DIILD in consecutive cancer patients who received post-ICI antineoplastic treatment within 6 months from the final dose of ICIs. There was also a separate control cohort of 55 ICI-naïve patients with non-small cell lung cancer (NSCLC) who received docetaxel. RESULTS Of 552 patients who received ICIs, 186 met the inclusion criteria. The cohort predominantly comprised patients with cancer of the lung, kidney/urinary tract, or gastrointestinal tract. The cumulative incidence of DIILD in the entire cohort at 3 and 6 months was 4.9% (95% confidence interval [CI] 2.4%-8.7%) and 7.2% (95% CI 4.0%-11.5%), respectively. There were significant differences according to cancer type (Gray's test, P = .04), with the highest cumulative incidence of DIILD in patients with lung cancer being 9.8% (95% CI 4.3%-18.0%) at 3 months and 14.2% (95% CI 7.3%-23.3%) at 6 months. DIILD was caused by docetaxel in six of these 11 lung cancer patients (54.5%). After matching, the cumulative incidence of docetaxel-induced ILD in patients with NSCLC in the post-ICI setting was higher than that in the ICI-naïve setting: 13.0% (95% CI 3.3%-29.7%) vs 4.3% (95% CI 0.3%-18.2%) at 3 months; and 21.7% (95% CI 7.9%-39.9%) vs 4.3% (95% CI 0.3%-18.2%) at 6 months. However, these were not significant differences (hazard ratio, 5.37; 95% CI 0.64-45.33; Fine-Gray P = .12). CONCLUSIONS Patients with lung cancer were at high risk of developing DIILD in subsequent regimens after ICI treatment. Whether NSCLC patients are predisposed to additional risk of docetaxel-induced ILD by prior ICIs warrants further study.
Collapse
Affiliation(s)
- Yoshihiro Kitahara
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan.
| | - Hideki Yasui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
- Department of Chemotherapy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Kiyoshi Misawa
- Department of Otorhinolaryngology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Hideaki Miyake
- Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|