1
|
Qiu P, Zhou K, Wang Y, Chen X, Xiao C, Li W, Chen Y, Chang Y, Liu J, Zhou F, Wang X, Shang J, Liu L, Qiu Z. Revitalizing gut barrier integrity: role of miR-192-5p in enhancing autophagy via Rictor in enteritis. Am J Physiol Gastrointest Liver Physiol 2024; 327:G317-G332. [PMID: 38954822 DOI: 10.1152/ajpgi.00291.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Intestinal inflammation and compromised barrier function are critical factors in the pathogenesis of gastrointestinal disorders. This study aimed to investigate the role of miR-192-5p in modulating intestinal epithelial barrier (IEB) integrity and its association with autophagy. A DSS-induced colitis model was used to assess the effects of miR-192-5p on intestinal inflammation. In vitro experiments involved cell culture and transient transfection techniques. Various assays, including dual-luciferase reporter gene assays, quantitative real-time PCR, Western blotting, and measurements of transepithelial electrical resistance, were performed to evaluate changes in miR-192-5p expression, Rictor levels, and autophagy flux. Immunofluorescence staining, H&E staining, TEER measurements, and FITC-dextran analysis were also used. Our findings revealed a reduced expression of miR-192-5p in inflamed intestinal tissues, correlating with impaired IEB function. Overexpression of miR-192-5p alleviated TNF-induced IEB dysfunction by targeting Rictor, resulting in enhanced autophagy flux in enterocytes (ECs). Moreover, the therapeutic potential of miR-192-5p was substantiated in colitis mice, wherein increased miR-192-5p expression ameliorated intestinal inflammatory injury by enhancing autophagy flux in ECs through the modulation of Rictor. Our study highlights the therapeutic potential of miR-192-5p in enteritis by demonstrating its role in regulating autophagy and preserving IEB function. Targeting the miR-192-5p/Rictor axis is a promising approach for mitigating gut inflammatory injury and improving barrier integrity in patients with enteritis.NEW & NOTEWORTHY We uncover the pivotal role of miR-192-5p in fortifying intestinal barriers amidst inflammation. Reduced miR-192-5p levels correlated with compromised gut integrity during inflammation. Notably, boosting miR-192-5p reversed gut damage by enhancing autophagy via suppressing Rictor, offering a potential therapeutic strategy for fortifying the intestinal barrier and alleviating inflammation in patients with enteritis.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Kezhi Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Youwei Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaobing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jian Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Zhao Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
2
|
Liu Y, Sun Y, Xiao M, Li S, Shi S. Comprehensive pan-cancer analysis reveals the versatile role of GALNT7 in epigenetic alterations and immune modulation in cancer. Heliyon 2024; 10:e31515. [PMID: 38845941 PMCID: PMC11153094 DOI: 10.1016/j.heliyon.2024.e31515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Cancer is a leading cause of mortality globally, characterized by intricate molecular alterations, including epigenetic changes such as glycosylation. This study presents a comprehensive pan-cancer analysis of Polypeptide N-Acetylgalactosaminyltransferase 7 (GALNT7), an enzyme involved in mucin-type O-linked protein glycosylation. GALNT7 has previously been linked to various cancers, but a unified analysis across cancer types is lacking. Leveraging data from TCGA, GTEx, and other sources, we scrutinized GALNT7's expression, prognostic relevance, links to immune-related genes, immune cell infiltration, and its involvement in tumor genetic heterogeneity across 33 cancer types. GALNT7 exhibited diverse expression patterns across cancer types, showcasing its potential as an oncogenic factor, with its expression levels linked to both positive and negative prognoses, highlighting the context-specific nature of its role in cancer progression. We delved into the intricate interplay between GALNT7 and immune genes, unveiling positive and negative correlations, underscoring complex interactions in the tumor microenvironment. GALNT7 was found to impact immune cell infiltration, which could have implications for treatment strategies. Additionally, GALNT7 displayed associations with genetic tumor aspects, encompassing genomic instability, DNA repair issues, and genetic mutations, hinting at its pivotal role in shaping the genetic landscape of diverse cancers. Enrichment analysis uncovered potential functions of GALNT7 beyond glycosylation, such as its participation in signaling pathways and its association with various diseases, notably cancer. This comprehensive analysis elucidates the multifaceted role of GALNT7 in cancer biology, underlining its potential as a therapeutic target and biomarker across various cancer types. These findings provide valuable insights for future research and the development of personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Yan Liu
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Yue Sun
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Meixia Xiao
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Shuang Li
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| | - Shengming Shi
- The First Affiliated Hospital of Huzhou Normal University, Huzhou First People's Hospital, China
| |
Collapse
|
3
|
Weigert M, Cui XL, West-Szymanski D, Yu X, Bilecz AJ, Zhang Z, Dhir R, Kehoe M, Zhang W, He C, Lengyel E. 5-Hydroxymethylcytosine signals in serum are a predictor of chemoresistance in high-grade serous ovarian cancer. Gynecol Oncol 2024; 182:82-90. [PMID: 38262243 PMCID: PMC11246748 DOI: 10.1016/j.ygyno.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
OBJECTIVE The genome-wide profiling of 5-hydroxymethylcytosines (5hmC) on circulating cell-free DNA (cfDNA) has revealed promising biomarkers for various diseases. The purpose of this study was to investigate 5hmC signals in serum cfDNA and identify novel predictive biomarkers for the development of chemoresistance in high-grade serous ovarian cancer (HGSOC). We hypothesized that 5hmC profiles in cfDNA reflect the development of chemoresistance and elucidate pathways that may drive chemoresistance in HGSOC. Moreover, we sought to identify predictors that would better stratify outcomes for women with intermediate-sensitive HGSOC. METHODS Women diagnosed with HGSOC and known platinum sensitivity status were selected for this study. Nano-hmC-Seal was performed on cfDNA isolated from archived serum samples, and differential 5hmC features were identified using DESeq2 to establish a model predictive of chemoresistance. RESULTS A multivariate model consisting of three features (preoperative CA-125, largest residual implant after surgery, 5hmC level of OSGEPL), stratified samples from intermediate sensitive, chemo-naive women diagnosed with HGSOC into chemotherapy-resistant- and sensitive-like strata with a significant difference in overall survival (OS). Independent analysis of The Cancer Genome Atlas data further confirmed that high OSGEPL1 expression is a favorable prognostic factor for HGSOC. CONCLUSIONS We have developed a novel multivariate model based on clinico-pathologic data and a cfDNA-derived 5hmC modified gene, OSGEPL1, that predicted response to platinum-based chemotherapy in intermediate-sensitive HGSOC. Our multivariate model applies to chemo-naïve samples regardless if the patint was treated with adjuvant or neoadjuvant chemotherapy. These results merit further investigation of the predictive capability of our model in larger cohorts.
Collapse
Affiliation(s)
- Melanie Weigert
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
| | - Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Diana West-Szymanski
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Xianbin Yu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | | | - Zhou Zhang
- Department of Preventive Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rohin Dhir
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
| | - Mia Kehoe
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|