1
|
Žilinskas J, Stukas D, Jasukaitienė A, Žievytė I, Balion Z, Šapauskienė J, Banienė R, Paužas H, Lizdenis P, Čėsna V, Dambrauskas Ž, Gulbinas A, Tamelis A. Assessing the Therapeutic Impacts of HAMLET and FOLFOX on BRAF-Mutated Colorectal Cancer: A Study of Cancer Cell Survival and Mitochondrial Dynamics In Vitro and Ex Vivo. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:142. [PMID: 38256402 PMCID: PMC10818271 DOI: 10.3390/medicina60010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Colorectal cancer (CRC) is a major global health challenge. The BRAF V600E mutation, found in 8-12% of CRC patients, exacerbates this by conferring poor prognosis and resistance to therapy. Our study focuses on the efficacy of the HAMLET complex, a molecular substance derived from human breast milk, on CRC cell lines and ex vivo biopsies harboring this mutation, given its previously observed selective toxicity to cancer cells. Materials and Methods: we explored the effects of combining HAMLET with the FOLFOX chemotherapy regimen on CRC cell lines and ex vivo models. Key assessments included cell viability, apoptosis/necrosis induction, and mitochondrial function, aiming to understand the mutation-specific resistance or other cellular response mechanisms. Results: HAMLET and FOLFOX alone decreased viability in CRC explants, irrespective of the BRAF mutation status. Notably, their combination yielded a marked decrease in viability, particularly in the BRAF wild-type samples, suggesting a synergistic effect. While HAMLET showed a modest inhibitory effect on mitochondrial respiration across both mutant and wild-type samples, the response varied depending on the mutation status. Significant differences emerged in the responses of the HT-29 and WiDr cell lines to HAMLET, with WiDr cells showing greater resistance, pointing to factors beyond genetic mutations influencing drug responses. A slight synergy between HAMLET and FOLFOX was observed in WiDr cells, independent of the BRAF mutation. The bioenergetic analysis highlighted differences in mitochondrial respiration between HT-29 and WiDr cells, suggesting that bioenergetic profiles could be key in determining cellular responses to HAMLET. Conclusions: We highlight the potential of HAMLET and FOLFOX as a combined therapeutic approach in BRAF wild-type CRC, significantly reducing cancer cell viability. The varied responses in CRC cell lines, especially regarding bioenergetic and mitochondrial factors, emphasize the need for a comprehensive approach considering both genetic and metabolic aspects in CRC treatment strategies.
Collapse
Affiliation(s)
- Justas Žilinskas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
| | - Darius Stukas
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (D.S.); (A.J.); (I.Ž.)
| | - Aldona Jasukaitienė
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (D.S.); (A.J.); (I.Ž.)
| | - Inga Žievytė
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (D.S.); (A.J.); (I.Ž.)
| | - Zbigniev Balion
- Preclinical Research Laboratory for Medicinal Products, Institute of Cardiology, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, LT-50162 Kaunas, Lithuania;
| | - Jurgita Šapauskienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.Š.); (R.B.)
| | - Rasa Banienė
- Department of Biochemistry, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.Š.); (R.B.)
| | - Henrikas Paužas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
| | - Paulius Lizdenis
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
| | - Vaidotas Čėsna
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
| | - Žilvinas Dambrauskas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (D.S.); (A.J.); (I.Ž.)
| | - Antanas Gulbinas
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
- Institute of Digestive Research, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (D.S.); (A.J.); (I.Ž.)
| | - Algimantas Tamelis
- Department of Surgery, Medical Academy, Faculty of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (H.P.); (P.L.); (V.Č.); (Ž.D.); (A.G.); (A.T.)
| |
Collapse
|