1
|
Ye G, Wu G, Li K, Zhang C, Zhuang Y, Liu H, Song E, Qi Y, Li Y, Yang F, Liao Y. Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography. Acad Radiol 2024; 31:1686-1697. [PMID: 37802672 DOI: 10.1016/j.acra.2023.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
RATIONALE AND OBJECTIVES To accurately identify the high-risk pathological factors of pulmonary nodules, our study constructed a model combined with clinical features, radiomics features, and deep transfer learning features to predict high-risk pathological pulmonary nodules. MATERIALS AND METHODS The study cohort consisted of 469 cases of lung adenocarcinoma patients, divided into a training cohort (n = 400) and an external validation cohort (n = 69). We obtained computed tomography (CT) semantic features and clinical characteristics, as well as extracted radiomics and deep transfer learning (DTL) features from the CT images. Selected features were used for constructing prediction models using the logistic regression (LR) algorithm. The performance of the models was evaluated through metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, calibration curve, and decision curve analysis. RESULTS The clinical model achieved an AUC of 0.774 (95% CI: 0.728-0.821) in the training cohort and 0.762 (95% confidence interval [CI]: 0.650-0.873) in the external validation cohort. The radiomics model demonstrated an AUC of 0.847 (95% CI: 0.810-0.884) in the training cohort and 0.800 (95% CI: 0.693-0.907) in the external validation cohort. The radiomics-DTL (Rad-DTL) model showed an AUC of 0.871 (95% CI: 0.838-0.905) in the training cohort and 0.806 (95% CI: 0.698-0.914) in the external validation cohort. The proposed combined model yielded AUC values of 0.872 and 0.814 in the training and external validation cohorts, respectively. The combined model demonstrated superiority over both the clinical model and the Rad-DTL model. There were no statistically significant differences observed in the comparison between the combined model incorporating clinical features and the Rad-DTL model. Decision curve analysis (DCA) indicated that the models provided a net benefit in predicting high-risk pathologic pulmonary nodules. CONCLUSION Rad-DTL signature is a potential biomarker for predicting high-risk pathologic pulmonary nodules using preoperative CT, determining the appropriate surgical strategy, and guiding the extent of resection.
Collapse
Affiliation(s)
- Guanchao Ye
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (G.Y., K.L., C.Z., Y.L.)
| | - Guangyao Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (G.W., F.Y.)
| | - Kuo Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (G.Y., K.L., C.Z., Y.L.)
| | - Chi Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (G.Y., K.L., C.Z., Y.L.)
| | - Yuzhou Zhuang
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China (Y.Z., H.L., E.S.)
| | - Hong Liu
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China (Y.Z., H.L., E.S.)
| | - Enmin Song
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China (Y.Z., H.L., E.S.)
| | - Yu Qi
- Department of Thoracic Surgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Y.Q.)
| | - Yiying Li
- Department of Breast Surgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China (Y.L.)
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (G.W., F.Y.)
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (G.Y., K.L., C.Z., Y.L.).
| |
Collapse
|
2
|
Yang H, Liu X, Wang L, Zhou W, Tian Y, Dong Y, Zhou K, Chen L, Wang M, Wu H. 18 F-FDG PET/CT characteristics of IASLC grade 3 invasive adenocarcinoma and the value of 18 F-FDG PET/CT for preoperative prediction: a new prognostication model. Nucl Med Commun 2024; 45:338-346. [PMID: 38312089 DOI: 10.1097/mnm.0000000000001819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
OBJECTIVE This study is performed to investigate the imaging characteristics of the International Association for the Study of Lung Cancer grade 3 invasive adenocarcinoma (IAC) on PET/CT and the value of PET/CT for preoperative predicting this tumor. MATERIALS AND METHODS We retrospectively enrolled patients with IAC from August 2015 to September 2022. The clinical characteristics, serum tumor markers, and PET/CT features were analyzed. T test, Mann-Whitney U test, χ 2 test, Logistic regression analysis, and receiver operating characteristic analysis were used to predict grade 3 tumor and evaluate the prediction effectiveness. RESULTS Grade 3 tumors had a significantly higher maximum standardized uptake value (SUV max ) and consolidation-tumor-ratio (CTR) ( P < 0.001), while Grade 1 - 2 tumors were prone to present with air bronchogram sign or vacuole sign ( P < 0.001). A stepwise logistic regression analysis revealed that smoking history, CEA, SUV max , air bronchogram sign or vacuole sign and CTR were useful predictors for Grade 3 tumors. The established prediction model based on the above 5 parameters generated a high AUC (0.869) and negative predictive value (0.919), respectively. CONCLUSION Our study demonstrates that grade 3 IAC has a unique PET/CT imaging feature. The prognostication model established with smoking history, CEA, SUV max , air bronchogram sign or vacuole sign and CTR can effectively predict grade 3 tumors before the operation.
Collapse
Affiliation(s)
- Hanyun Yang
- GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|