1
|
Xing XW, Huang X, Li WP, Wang MK, Yang JS. Clinical application value of long non-coding RNAs signatures of genomic instability in predicting prognosis of hepatocellular carcinoma. World J Gastrointest Surg 2024; 16:2386-2392. [PMID: 39220063 PMCID: PMC11362949 DOI: 10.4240/wjgs.v16.i8.2386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 08/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents challenges due to its high recurrence and metastasis rates and poor prognosis. While current clinical diagnostic and prognostic indicators exist, their accuracy remains imperfect due to their biological complexity. Therefore, there is a quest to identify improved biomarkers for HCC diagnosis and prognosis. By combining long non-coding RNA (lncRNA) expression and somatic mutations, Duan et al identified five representative lncRNAs from 88 lncRNAs related to genomic instability (GI), forming a GI-derived lncRNA signature (LncSig). This signature outperforms previously reported LncSig and TP53 mutations in predicting HCC prognosis. In this editorial, we comprehensively evaluate the clinical application value of such prognostic evaluation model based on sequencing technology in terms of cost, time, and practicability. Additionally, we provide an overview of various prognostic models for HCC, aiding in a comprehensive understanding of research progress in prognostic evaluation methods.
Collapse
Affiliation(s)
- Xiao-Wen Xing
- Department of Disease Control and Prevention, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Xiao Huang
- Department of Disease Control and Prevention, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Wei-Peng Li
- Department of Disease Control and Prevention, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Ming-Ke Wang
- Department of Disease Control and Prevention, Naval Medical Center, Naval Medical University, Shanghai 200052, China
| | - Ji-Shun Yang
- Medical Care Center, Naval Medical University, Shanghai 200052, China
| |
Collapse
|
2
|
Bi X, Wang J, Liu C. Intratumoral Microbiota: Metabolic Influences and Biomarker Potential in Gastrointestinal Cancer. Biomolecules 2024; 14:917. [PMID: 39199305 PMCID: PMC11353126 DOI: 10.3390/biom14080917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Gastrointestinal (GI) cancers impose a substantial global health burden, highlighting the necessity for deeper understanding of their intricate pathogenesis and treatment strategies. This review explores the interplay between intratumoral microbiota, tumor metabolism, and major types of GI cancers (including esophageal, gastric, liver, pancreatic, and colorectal cancers), summarizing recent studies and elucidating their clinical implications and future directions. Recent research revealed altered microbial signatures within GI tumors, impacting tumor progression, immune responses, and treatment outcomes. Dysbiosis-induced alterations in tumor metabolism, including glycolysis, fatty acid metabolism, and amino acid metabolism, play critical roles in cancer progression and therapeutic resistance. The integration of molecular mechanisms and potential biomarkers into this understanding further enhances the prognostic significance of intratumoral microbiota composition and therapeutic opportunities targeting microbiota-mediated tumor metabolism. Despite advancements, challenges remain in understanding the dynamic interactions within the tumor microenvironment (TME). Future research directions, including advanced omics technologies and prospective clinical studies, offer promising avenues for precision oncology and personalized treatment interventions in GI cancer. Overall, integrating microbiota-based approaches and molecular biomarkers into GI cancer management holds promise for improving patient outcomes and survival.
Collapse
Affiliation(s)
- Xueyuan Bi
- Department of Pharmacy, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Cuicui Liu
- Department of Science and Education, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
3
|
Sun X, Zhang H, Zhang X, Gao W, Zhou C, Kou X, Deng J, Zhang J. The Cellular Microbiome of Visceral Organs: An Inherent Inhabitant of Parenchymal Cells. Microorganisms 2024; 12:1333. [PMID: 39065101 PMCID: PMC11279389 DOI: 10.3390/microorganisms12071333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The cell is the basic unit of life. It is composed of organelles and various organic and inorganic biomolecules. Recent 16S ribosomal ribonucleic acid (16S rRNA) gene sequencing studies have revealed the presence of tissue bacteria in both tumor and normal tissues. Recently, we found that the liver microbiome resided in hepatocytes. Here, we further report on the cellular microbiome in the parenchymal cells of visceral organs as inherent inhabitants. We performed 16S rRNA gene sequencing on visceral organs of male adult Sprague Dawley (SD) rats, pregnant rats, newborn rats, and fetuses and placentas; then, we performed fluorescence in situ hybridization and immunofluorescence in visceral organs. Furthermore, we performed Western blotting on nuclear and cytoplasmic extractions of visceral organs of SD rats and cell lines HepG2, Huh-7, Hepa1-6, and HSC-T6. A high abundance of 16S rRNA gene was detected in the visceral organs of male adult, pregnant, newborn, and fetal rats as well as their placentas. The number of operational taxonomic units (OTUs) of visceral bacteria was higher than that of the feces and ileum bacteria. Bacterial 16S rRNA, lipopolysaccharide (LPS), and lipoteichoic acid (LTA) were found in the parenchymal cells of visceral organs, as well as in HepG2, Huh-7, HSC-T6, and Hepa1-6 cells. LPS consistently appeared in the nucleus of cells, while LTA was mainly found in the cytoplasm. In conclusion, the cellular microbiome is an intrinsic component of cells. Gram-negative bacteria are located in the nucleus, and Gram-positive bacteria are located in the cytoplasm. This differs from the gut microbiome and may be inherited.
Collapse
Affiliation(s)
- Xiaowei Sun
- Correspondence: (X.S.); (J.Z.); Tel.: +86-13519316382 (X.S.); +86-15095387695 (J.Z.)
| | | | | | | | | | | | | | - Jiangang Zhang
- Pathology Institute, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (H.Z.); (X.Z.); (W.G.); (C.Z.); (X.K.); (J.D.)
| |
Collapse
|
4
|
ShanTian, Guo Y, Lan Q, Li J, Hu J, Qiu M, Guo C, Dong W. Association between ascites Gustave Roussy immune score and the intratumoural microbiome in malignant ascites secondary to hepatocellular carcinoma. Int Immunopharmacol 2024; 133:112097. [PMID: 38677092 DOI: 10.1016/j.intimp.2024.112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/30/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUNDS The Gustave Roussy Immune (GRIm) score predicts survival outcomes in several cancers. However, the prognostic significance of the GRIm score in patients with malignant ascites has not yet been investigated. METHODS Clinical samples were collected from a cohort of patients with malignant ascites secondary to hepatocellular carcinoma (HCC). We calculated serum GRIm (sGRIm) and ascites GRIm (aGRIm) scores and divided the samples into low and high GRIm score groups. Survival analysis was used to compare the prognostic significance of the sGRIm and aGRIm scores. 16S rRNA sequencing was performed to determine the profiles of the intratumoral microbiota in the groups. A fluorescent multiplex immunohistochemistry (mIHC) assay was used to detect the expression of different immune cells by labeling seven markers of malignant ascites. RESULTS 155 patients with HCC and malignant ascites were enrolled in this study. Survival analysis revealed that the aGRIm score showed a superior prognostic significance compared to the sGRIm score. Microbial analysis demonstrated that the bacterial richness and diversity were higher in the low aGRIm score group than in the high aGRIm score group. LefSe analysis revealed that certain bacteria were correlated with high aGRIm scores. Fluorescent mIHC displayed the tumor microenvironment of malignant ascites and found that the density of CD8 + T cells was significantly higher in the low aGRIm score group than in the high aGRIm score group. CONCLUSIONS Our present study identified a novel scoring system (aGRIm score) that can predict the survival outcome of patients with malignant ascites secondary to HCC.
Collapse
Affiliation(s)
- ShanTian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yingyun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qingzhi Lan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiaming Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Meiqi Qiu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chunxia Guo
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
5
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|