1
|
Zaitseva OV, Smirnov RV, Starunova ZI, Vedenin AA, Starunov VV. Sensory cells and the organization of the peripheral nervous system of the siboglinid Oligobrachia haakonmosbiensis Smirnov, 2000. BMC ZOOL 2022; 7:16. [PMID: 37170298 PMCID: PMC10127031 DOI: 10.1186/s40850-022-00114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The nervous system of siboglinids has been studied mainly in Osedax and some Vestimentifera, while data in Frenulata – one of the four pogonophoran main branches – is still fragmentary. In most of the studies, the focus is almost always on the central nervous system, while the peripheral nervous system has traditionally received little attention. In contrast to other annelids, the structure and diversity of sensory structures in siboglinids are still quite undescribed. Meanwhile, the peripheral nervous system, as well as sensory elements, are extremely evolutionarily labile, and information about their organization is of high importance to understand lifestyles and behavior as well as main trends that lead siboglinids to their peculiar organization.
Results
The structure of the peripheric nervous system, sensory elements, and neuromuscular relationships of Oligobrachia haakonmosbiensis were studied using both scanning electron and confocal laser microscopy. A significant number of monociliary sensory cells, as well as sensory complexes located diffusely in the epithelium of the whole body were revealed. The latter include the cephalic tentacles, sensory cells accumulations along the dorsal furrow and ciliary band, areas of the openings of the tubiparous glands, and papillae. The oval ciliary spot located on the cephalic lobe at the base of the tentacles can also be regarded as a sensory organ. Most of the detected sensory cells show immunoreactivity to substance P and/or acetylated α-tubulin. FMRFamide- and serotonin-like immunoreactivity are manifested by neurons that mainly innervate tentacles, muscles, body wall epithelium, skin glands, tubiparous glands, and papillae. In the larva of O. haakonmosbiensis, monociliary sensory elements were revealed in the region of the apical organ, along the body, and on the pygidium.
Conclusions
The diversity of sensory structures in O. haakonmosbiensis comprises epidermal solitary sensory cells, sensory spots around tubiparous glands openings, and putative sensory organs such as cephalic tentacles, an oval ciliary spot on the cephalic lobe, the dorsal furrow, and papillae. Sensory structures associated with papillae and tubiparous glands play presumable mechanosensory functions and are associated with regulation of tube building as well as anchorage of the worm inside the tube. Sensory structures of the dorsal furrow are presumably engaged in the regulation of reproductive behavior. An overall low level of morphological differentiation of O. haakonmosbiensis peripheral nervous system is not typical even for annelids with the intraepithelial nervous system. This can be considered as a plesiomorphic feature of its peripheral plexus’s organization, or as evidence for the neotenic origin of Siboglinidae.
Collapse
|
2
|
Schmidbaur H, Schwaha T, Franzkoch R, Purschke G, Steiner G. Within-family plasticity of nervous system architecture in Syllidae (Annelida, Errantia). Front Zool 2020; 17:20. [PMID: 32582362 PMCID: PMC7310387 DOI: 10.1186/s12983-020-00359-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ground pattern underlying the nervous system of the last common ancestor in annelids was long thought to be settled, consisting of a dorsal brain, circumoesophageal connectives and a subepithelial, ladder-like ventral nerve cord with segmental ganglia connected by paired connectives. With the advent of immunocytochemical stainings and confocal laser scanning microscopy, it becomes evident that its architecture is extremely diverse, which makes the reconstruction of a ground pattern in annelida challenging. Whereas the nervous systems of many different families has already been described, only very few studies looked at the diversity of nervous systems within such clades to give a closer estimate on how plastic the annelid nervous system really is. So far, little is known on syllid nervous system architecture, one of the largest and most diverse groups of marine annelids. RESULTS The position of the brain, the circumoesophageal connectives, the stomatogastric nervous system, the longitudinal nerves that traverse each segment and the innervation of appendages are relatively uniform within the clade. Both the number of connectives within the ventral nerve cord and the number of segmental nerves, which in earlier studies were used to infer phylogenetic relationships and to reconstruct an annelid ground pattern, are highly diverse and differ between genera or even within a given genus. Differences in the distribution of somata of the brain, the nuchal innervation and its associated cell bodies were found between Syllinae and Exogoninae and may be subfamily-specific. CONCLUSIONS The nervous system morphology of syllids very likely depends on the taxon-specific ecological requirements. Thus, it is not surprising that in a clade, which occupies such diverse niches as the Annelida, we find similar patterns in phylogenetically widely separated species in similar niches and a high degree of modularity within a family. Only standardized protocols and staining methods can lead to comparable results, but so far different approaches have been taken to describe annelid nervous systems, making homologization of certain structures difficult. This study provides the first thorough description of the nervous system in the family Syllidae, allowing more detailed comparisons between annelid families in the future.
Collapse
Affiliation(s)
- Hannah Schmidbaur
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Present address: Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Schwaha
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Rico Franzkoch
- Zoology and Developmental Biology, Department of Biology and Chemistry, University of Osnabrück, Barbarastr. 11, 49069 Osnabrück, Germany
- Present address: Microbiology, Department of Biology and Chemistry, University of Osnabrück, Barbarastr. 11, 49069 Osnabrück, Germany
| | - Günter Purschke
- Zoology and Developmental Biology, Department of Biology and Chemistry, University of Osnabrück, Barbarastr. 11, 49069 Osnabrück, Germany
| | - Gerhard Steiner
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
3
|
Evans SD, Gehling JG, Droser ML. Slime travelers: Early evidence of animal mobility and feeding in an organic mat world. GEOBIOLOGY 2019; 17:490-509. [PMID: 31180184 DOI: 10.1111/gbi.12351] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Mobility represents a key innovation in the evolution of complex animal life. The ability to move allows for the exploration of new food sources, escapes from unfavorable environmental conditions, enhanced ability to exchange genetic material, and is one of the major reasons for the diversity and success of animal life today. The oldest widely accepted trace fossils of animal mobility are found in Ediacaran-aged rocks (635-539 Ma). The earliest definitive evidence for movement associated with exploitation of resources for feeding occurs in the White Sea assemblage of the Ediacara Biota-macroscopic, soft-bodied fossils of Ediacaran age. Here, we evaluate potential support for mobility in dickinsoniomorphs, presenting new data regarding abundant Dickinsonia and associated trace fossils from the Ediacara Member, South Australia. Results quantitatively demonstrate that Dickinsonia was capable of mobility on relatively short, ecological timescales. This organism was bilaterally symmetrical, likely moved via muscular peristalsis, and left trace fossils due to active removal of the organic mat related to feeding. Analogous structures associated with Yorgia indicate that it was also mobile and fed in a similar manner. Morphological evidence suggests that two other modular taxa, Andiva and Spriggina, were able to move but did not feed in a manner that impacted the organic mat. Together, these data suggest that mobility was present in multiple disparate bilaterally symmetrical Ediacaran taxa.
Collapse
Affiliation(s)
- Scott D Evans
- Department of Earth Sciences, University of California at Riverside, Riverside, California
| | - James G Gehling
- South Australia Museum, Adelaide, South Australia, Australia
| | - Mary L Droser
- Department of Earth Sciences, University of California at Riverside, Riverside, California
| |
Collapse
|
4
|
Starunov VV. The organization of musculature and the nervous system in the pygidial region of phyllodocid annelids. ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-018-00430-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Helm C, Beckers P, Bartolomaeus T, Drukewitz SH, Kourtesis I, Weigert A, Purschke G, Worsaae K, Struck TH, Bleidorn C. Convergent evolution of the ladder-like ventral nerve cord in Annelida. Front Zool 2018; 15:36. [PMID: 30275868 PMCID: PMC6161469 DOI: 10.1186/s12983-018-0280-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A median, segmented, annelid nerve cord has repeatedly been compared to the arthropod and vertebrate nerve cords and became the most used textbook representation of the annelid nervous system. Recent phylogenomic analyses, however, challenge the hypothesis that a subepidermal rope-ladder-like ventral nerve cord (VNC) composed of a paired serial chain of ganglia and somata-free connectives represents either a plesiomorphic or a typical condition in annelids. RESULTS Using a comparative approach by combining phylogenomic analyses with morphological methods (immunohistochemistry and CLSM, histology and TEM), we compiled a comprehensive dataset to reconstruct the evolution of the annelid VNC. Our phylogenomic analyses generally support previous topologies. However, the so far hard-to-place Apistobranchidae and Psammodrilidae are now incorporated among the basally branching annelids with high support. Based on this topology we reconstruct an intraepidermal VNC as the ancestral state in Annelida. Thus, a subepidermal ladder-like nerve cord clearly represents a derived condition. CONCLUSIONS Based on the presented data, a ladder-like appearance of the ventral nerve cord evolved repeatedly, and independently of the transition from an intraepidermal to a subepidermal cord during annelid evolution. Our investigations thereby propose an alternative set of neuroanatomical characteristics for the last common ancestor of Annelida or perhaps even Spiralia.
Collapse
Affiliation(s)
- Conrad Helm
- Animal Evolution and Biodiversity, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Patrick Beckers
- Institute of Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany
| | - Thomas Bartolomaeus
- Institute of Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany
| | | | - Ioannis Kourtesis
- Animal Evolution and Biodiversity, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Anne Weigert
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Günter Purschke
- Department of Developmental Biology and Zoology, University of Osnabrück, 49069 Osnabrück, Germany
| | - Katrine Worsaae
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Torsten H. Struck
- Frontiers in Evolutionary Zoology, Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318 Oslo, Norway
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, Georg-August-University Göttingen, 37073 Göttingen, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Parapar J, Candás M, Cunha-Veira X, Moreira J. Exploring annelid anatomy using micro-computed tomography: A taxonomic approach. ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2017.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Rimskaya-Korsakova NN, Kristof A, Malakhov VV, Wanninger A. Neural architecture of Galathowenia oculata Zach, 1923 (Oweniidae, Annelida). Front Zool 2016; 13:5. [PMID: 26862347 PMCID: PMC4746771 DOI: 10.1186/s12983-016-0136-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oweniids are marine tubeworms burrowing in muddy sediments that in current phylogenies form an early branching lineage within Annelida. Little is known about their general morphology, in particular the nervous system. Here we provide an immunocytochemical investigation of the nervous system of Galathowenia oculata in order to discuss putative ancestral neuronal features in Oweniidae. RESULTS Adult Galathowenia oculata have neither a supraesophageal ganglion nor ganglia associated with the ventral nerve cord. Instead, there is a dorsal brain commissure in the head collar that is engulfed by a cellular cortex. Accordingly, we herein term this neural structure "medullary brain commissure". The anterior margin of the head collar exhibits numerous neurites that emerge from the brain commissure. The dorsolateral folds are innervated by the ventrolateral neurite bundles extending from the circumesophageal connectives. In the anterior uniramous and biramous segments immunoreactive somata are distributed evenly along the ventral nerve cord and arranged metamerically in the posterior-most short segments. One dorsal and two pairs of lateral neurite bundles extend longitudinally along the body. Numerous serially arranged circular neurite bundles were labeled in anteriormost long segments. Metameric arrangement of the circular neurite bundles stained against FMRFamide and acetylated α-tubulin is revealed in posterior short segments. For the first time immunoreactive somata arranged in clusters are reported within the pygidium in oweniids. CONCLUSIONS Due to the lack of head appendages and a sedentary mode of life, G. oculata exhibits a single dorsal commissure (versus a brain with four commissures in most annelids). A "medullary brain commissure" is known so far only in Oweniidae and Echiura. Lack of ganglia and metamery in the ventral nerve cord of the anteriormost segments might be the result of the elongation of these segments. In the short posterior segments the metamery of immunoreactive somata and circular neurite bundles is conserved. We hypothesize that the unpaired ventral nerve cord in adult oweniids might be a result of an initially paired ventral nerve cord that fuses during development, a condition not uncommon within Annelida.
Collapse
Affiliation(s)
| | - Alen Kristof
- />Department of Integrative Zoology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Vladimir V. Malakhov
- />Department of Invertebrate Zoology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia
| | - Andreas Wanninger
- />Department of Integrative Zoology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
8
|
Ultrastructural differences in presumed photoreceptive organs and molecular data as a means for species discrimination in Polygordius (Annelida, Protodriliformia, Polygordiidae). ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0272-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|