1
|
Clarke TM, Barnett A, Fitzpatrick R, Ryan LA, Hart NS, Gauthier ARG, Scott-Holland TB, Huveneers C. Personal electric deterrents can reduce shark bites from the three species responsible for the most fatal interactions. Sci Rep 2024; 14:16307. [PMID: 39009626 PMCID: PMC11251019 DOI: 10.1038/s41598-024-66679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
The frequency of unprovoked shark bites is increasing worldwide, leading to a growing pressure for mitigation measures to reduce shark-bite risk while maintaining conservation objectives. Personal shark deterrents are a promising and non-lethal strategy that can protect ocean users, but few have been independently and scientifically tested. In Australia, bull (Carcharhinus leucas), tiger (Galeocerdo cuvier), and white sharks (Carcharodon carcharias) are responsible for the highest number of bites and fatalities. We tested the effects of two electric deterrents (Ocean Guardian's Freedom+ Surf and Freedom7) on the behaviour of these three species. The surf product reduced the probability of bites by 54% across all three species. The diving product had a similar effect on tiger shark bites (69% reduction) but did not reduce the frequency of bites from white sharks (1% increase), likely because the electrodes were placed further away from the bait. Electric deterrents also increased the time for bites to occur, and frequency of reactions and passes for all species tested. Our findings reveal that both Freedom+ Surf and Freedom7 electric deterrents affect shark behaviour and can reduce shark-bite risk for water users, but neither product eliminated the risk of shark bites entirely. The increasing number of studies showing the ability of personal electric deterrents to reduce shark-bite risk highlights personal protection as an effective and important part of the toolbox of shark-bite mitigation measures.
Collapse
Affiliation(s)
- Thomas M Clarke
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia.
| | - Adam Barnett
- Marine Data Technology Hub, James Cook University, Townsville, QLD, Australia
- Biopixel Oceans Foundation, Cairns, QLD, Australia
| | | | - Laura A Ryan
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Nathan S Hart
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Arnault R G Gauthier
- Centre Sécurité Requin, 25F Avenue Des Artisans, Zone Artisanale de La Pointe Des Châteaux, 97436, Saint Leu, Reunion Island, France
| | | | - Charlie Huveneers
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
2
|
Fritzsch B. Evolution and development of extraocular motor neurons, nerves and muscles in vertebrates. Ann Anat 2024; 253:152225. [PMID: 38346566 DOI: 10.1016/j.aanat.2024.152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
The purpose of this review is to analyze the origin of ocular motor neurons, define the pattern of innervation of nerve fibers that project to the extraocular eye muscles (EOMs), describe congenital disorders that alter the development of ocular motor neurons, and provide an overview of vestibular pathway inputs to ocular motor nuclei. Six eye muscles are innervated by axons of three ocular motor neurons, the oculomotor (CNIII), trochlear (CNIV), and abducens (CNVI) neurons. Ocular motor neurons (CNIII) originate in the midbrain and innervate the ipsilateral orbit, except for the superior rectus and the levator palpebrae, which are contralaterally innervated. Trochlear motor neurons (CNIV) originate at the midbrain-hindbrain junction and innervate the contralateral superior oblique muscle. Abducens motor neurons (CNVI) originate variously in the hindbrain of rhombomeres r4-6 that innervate the posterior (or lateral) rectus muscle and innervate the retractor bulbi. Genes allow a distinction between special somatic (CNIII, IV) and somatic (CNVI) ocular motor neurons. Development of ocular motor neurons and their axonal projections to the EOMs may be derailed by various genetic causes, resulting in the congenital cranial dysinnervation disorders. The ocular motor neurons innervate EOMs while the vestibular nuclei connect with the midbrain-brainstem motor neurons.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, NE, USA.
| |
Collapse
|
3
|
Steele EP, Laidre ME. Wild social behavior differs following experimental loss of vision in social hermit crabs. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:20. [PMID: 37199869 DOI: 10.1007/s00114-023-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/20/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Even for animals with multiple senses at their disposal, there may be a strong reliance on a single sense, like vision, for social behavior. Experimentally blocking or eliminating vision offers a powerful means of testing impacts on social behavior, though few studies have followed experimentally blinded individuals in the wild to test potential changes in social behavior in natural settings. Here we conducted experiments with social hermit crabs (Coenobita compressus), applying opaque material overtop their eyes to temporarily blind individuals. We then released these experimentally blinded individuals and non-blinded control individuals into the wild as well as into captive social settings. Compared to control individuals, experimentally blinded individuals initiated significantly fewer social contacts with conspecifics in the wild. These experimentally blinded individuals were not, however, differentially targeted by conspecifics. Interestingly, unlike the wild experiments, the captive experiments showed no differences in social behavior between experimentally blinded and non-blinded control individuals, suggesting that experiments in natural settings in the wild may be essential to fully unraveling impacts of blindness on social behavior. Broadly, for social animals that are highly reliant on the visual modality, social behavior may change dramatically if they lose their vision.
Collapse
Affiliation(s)
- Elliott P Steele
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA.
- Graduate Program in Ecology, Evolution, Environment, and Society, Dartmouth College, Hanover, NH, 03755, USA.
| | - Mark E Laidre
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA.
- Graduate Program in Ecology, Evolution, Environment, and Society, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
4
|
Balanin S, Hauser-Davis RA, Giareta E, Charvet P, Wosnick N. Almost nothing is known about the tiger shark in South Atlantic waters. PeerJ 2023; 11:e14750. [PMID: 36700003 PMCID: PMC9869778 DOI: 10.7717/peerj.14750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/27/2022] [Indexed: 01/22/2023] Open
Abstract
The tiger shark (Galeocerdo cuvier) has been relatively well assessed concerning biology and ecology aspects in both Atlantic and Pacific North America and in Caribbean waters. The amount of data in these regions has led to the species protection under capture quotas and with the creation of sanctuaries. The reality in developing countries, however, is the exact opposite, with scarce information on the species in the southern hemisphere, namely South American and African waters. In these regions, protection measures are insufficient, and studies on tiger shark biology and ecology are scarce, significantly hindering conservation and management efforts. Thus, the aim of this study was to compile scientific literature on the tiger shark in the South Atlantic and discuss the impact of these data (or lack thereof) distributed within a total of ten research categories for guiding management plans. In total, 41 scientific publications on different G. cuvier biology and ecology aspects were obtained. The most studied topics were Feeding Ecology (n = 12), followed by Human Interactions (n = 8), and Movements and Migration (n = 7). Northeastern Brazil (Southwest Atlantic) was the most researched area, probably due to the higher coastal abundance of tiger sharks in this area, alongside a high number of recorded attacks, justifying funding for studies in the region. No studies carried out in other South American or African countries were found. It is important to mention that even though some research topics are relatively well covered, a severe knowledge gap is noted for risk assessments and fisheries management, with a proposition for the implementation of sanctuaries noted. This is, however, particularly worrisome, as the South Atlantic is mostly unexplored in this regard for tiger sharks. It is also important to note how different the attention given to this species is in the North Atlantic when compared to the South region. Lastly, we highlight that the existence of sub-populations, the lack of migratory corridors geographically connecting distinct areas used by the species, and the lack of fisheries statistics on tiger shark landings, all increase the vulnerability of this species in the South Atlantic.
Collapse
Affiliation(s)
- Samuel Balanin
- Projeto Tintureira—Associação MarBrasil, Pontal do Paraná, Brazil,Programa de Pós-graduação em Zoologia—Universidade Federal do Paraná, Curitiba, Paraná
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção a Saúde Ambiental, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eloísa Giareta
- Projeto Tintureira—Associação MarBrasil, Pontal do Paraná, Brazil,Programa de Pós-graduação em Zoologia—Universidade Federal do Paraná, Curitiba, Paraná
| | - Patricia Charvet
- Projeto Tintureira—Associação MarBrasil, Pontal do Paraná, Brazil,Programa de Pós-graduação em Sistemática, Uso e Conservação da Biodiversidade—Universidade Federal do Ceará, Fortaleza, Brazil
| | - Natascha Wosnick
- Projeto Tintureira—Associação MarBrasil, Pontal do Paraná, Brazil,Programa de Pós-graduação em Zoologia—Universidade Federal do Paraná, Curitiba, Paraná
| |
Collapse
|
5
|
Poscai AN, da Silva JPCB, Casas ALS, Lenktaitis P, Gadig OBF. Morphological study of the oral denticles of the porbeagle shark Lamna nasus. JOURNAL OF FISH BIOLOGY 2022; 101:226-235. [PMID: 35578984 DOI: 10.1111/jfb.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Oral denticles of sharks are composed by a crown, dentine covered by a layer of enameloid and pulp cavity, the same structure of the dermal denticles found across the body surface of most elasmobranchs. In addition, oral papillae and taste buds are distributed among denticles within the oropharyngeal cavity, playing a fundamental role for tasting as part of the chemosensory system of fishes. Scanning electron microscopy (SEM) has been employed as an important tool for the study of dermal denticles and other structures, as well as histology and more recently computed tomography (CT) scan analysis. Herein, the authors used two methods for the study of the morphology of the oropharyngeal cavity of Lamna nasus (Lamniformes), an oceanic and pelagic shark: SEM and CT scan. The general morphology of oral denticles studied herein is related to abrasion strength as they are diamond-shaped, lack lateral cusps and have less pronounced ridges. In addition, smooth ridges and broad rounded denticles could be related to prevent abrasion during food consumption and manipulation. Oral papillae had a round shape and were observed only under SEM. The densities of papillae were estimated in 100 per cm2 , whereas denticles were 1760 and 1230 cm2 over the dorsal and ventral regions, respectively. The high numbers of denticles are inversely proportional to papillae density; denticles seem to restrict papillae distribution. Regarding the differences between methodologies, under SEM, only the crown was visualized, as well the papillae, allowing the estimation of size and density of both structures. Nonetheless, under CT scan, the whole components of denticles were clearly visualized: different views of the crown, peduncle, basal plate, and pulp cavity. On the contrary, oral papillae were not visualized under CT due to the tissue preparation. Furthermore, both methods are complementary and were important to extract as much information as possible from denticles and papillae.
Collapse
Affiliation(s)
- Aline N Poscai
- Instituto de Biociências, Campus de Rio Claro, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, Brazil
- Laboratório de Pesquisa de Elasmobrânquios, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Vicente, Brazil
| | - João Paulo C B da Silva
- Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - André Luis S Casas
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo, Santos, Brazil
| | - Phillip Lenktaitis
- Laboratório de Histologia, Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Otto B F Gadig
- Instituto de Biociências, Campus de Rio Claro, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, Brazil
- Laboratório de Pesquisa de Elasmobrânquios, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", São Vicente, Brazil
| |
Collapse
|
6
|
Poscai AN, Casas ALS, da Silva JPC, Lenktaitis P, Gadig OB. Inside the mouth of sharks: Comparative data on the morphology of the oropharyngeal cavity. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Collin SP, Collin HB. The Ultrastructure of the Nictitating Membrane of the Little Penguin ( Eudyptula minor, Aves). Integr Org Biol 2021; 2:obaa048. [PMID: 33791581 PMCID: PMC7810573 DOI: 10.1093/iob/obaa048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ultrastructure of the nictitating membrane in the little penguin Eudyptula minor was studied using both scanning and transmission electron microscopy to improve our understanding of the function of ocular adnexa in diving birds. Following euthanasia, eyes were enucleated and immersion fixed in Karnovsky's fixative. The nictitating membrane and conjunctiva were embedded in araldite and semi- or ultra-thin sections were stained and photographed using compound and transmission electron microscopes, respectively. Ultrastructural dimensions were measured directly from digital photographs. Surface ultrastructure was examined using scanning electron microscopy. The transparent nictitating membrane consists of a dense stroma surrounded by epithelia on both the external (conjunctival) and internal (bulbar) surfaces. The conjunctival surface of the membrane near the leading edge is covered by microvilli, which transition to microplicae and finally to microridges in the periphery. Beneath the epithelial cells, there is a well-developed basement membrane. Scattered throughout this epithelium are a few goblet cells. The surface of the bulbar epithelium is covered by microvilli near the leading edge, which become denser peripherally. The stroma consists of densely-packed collagen fibrils, which are randomly oriented in bundles near the leading edge but are aligned in the same direction parallel with the epithelial and corneal surfaces and with the leading edge, when the membrane is extended. The ultrastructure of the nictitating membrane in the little penguin differs from other birds and its function is predominantly protective, while preserving clear vision in both water and air.
Collapse
Affiliation(s)
- S P Collin
- School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia.,Oceans Graduate School and the Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia
| | - H B Collin
- Department of Optometry and Vision Science, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
8
|
Abstract
This report elaborates on adaptations of the eyes of the whale shark Rhincodon typus (Elasmobranchii, Rhincodontidae), including the discovery that they are covered with dermal denticles, which is a novel mechanism of eye protection in vertebrates. The eye denticle differs in morphology from that of the dermal denticles distributed over the rest of the body, consistent with a different function (abrasion resistance). We also demonstrate that the whale shark has a strong ability to retract the eyeball into the eye socket. The retraction distance was calculated to be approximately half the diameter of the eye, which is comparable to those of other vertebrates that are known to have highly retractable eyes. These highly protective features of the whale shark eye seem to emphasize the importance of vision for environmental perception, which contradicts the general, though poorly established, notion of low reliance on vision in this species.
Collapse
|
9
|
Rangel BDS, Amorim AF, Kfoury JR, Rici REG. Microstructural morphology of dermal and oral denticles of the sharpnose sevengill shark Heptranchias perlo (Elasmobranchii: Hexanchidae), a deep-water species. Microsc Res Tech 2019; 82:1243-1248. [PMID: 30946510 DOI: 10.1002/jemt.23273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/06/2019] [Accepted: 03/24/2019] [Indexed: 01/18/2023]
Abstract
The dermal denticles are among the unique morphological adaptations of sharks, which have been acquired throughout their long evolutionary process of more than 400 million years. Species-specific morphological characteristics of these structures has been applied specially as tools for functional and taxonomic (family-level) studies. Nevertheless, few studies have explored the diversity of denticle structure in different around the body and oral cavity. In the present study, we described the morphological differences observed in skin and oral cavity of sharpnose sevengill shark Heptranchias perlo, using scanning electron microscopy. Our findings demonstrate substantial variation in morphological structure of the denticles of the body and oral cavity. Overall, the dermal denticles observed across body surface were overlapped, tricuspid, with the central cuspid being more pronounced, pointed, and triangular in shape compared with lateral ones. Unlike, the denticles on the tip of the nose had a smooth crown, with rounded edges, being compact, and overlapped. The oral denticles were found in the ventral and dorsal region of the oral cavity. They also were tricuspid, but with differences in arrangement and ridges. These results suggest a strict functional relationship with the morphological characteristics observed. Such morphological diversity body-region-dependent highlights the need for comparative studies that include oral denticles, since this structure has an important functional role in sharks and can be found in fossil and recent records.
Collapse
Affiliation(s)
- Bianca de Sousa Rangel
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil.,Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alberto F Amorim
- Centro APTA do Pescado Marinho, Instituto de Pesca, APTA, SAA, São Paulo, SP, Brazil
| | - José R Kfoury
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rose E G Rici
- Central de Facilidades à Pesquisa, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Collin SP. Scene through the eyes of an apex predator: a comparative analysis of the shark visual system. Clin Exp Optom 2018; 101:624-640. [PMID: 30066959 DOI: 10.1111/cxo.12823] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The eyes of apex predators, such as the shark, have fascinated comparative visual neuroscientists for hundreds of years with respect to how they perceive the dark depths of their ocean realm or the visual scene in search of prey. As the earliest representatives of the first stage in the evolution of jawed vertebrates, sharks have an important role to play in our understanding of the evolution of the vertebrate eye, including that of humans. This comprehensive review covers the structure and function of all the major ocular components in sharks and how they are adapted to a range of underwater light environments. A comparative approach is used to identify: species-specific diversity in the perception of clear optical images; photoreception for various visual behaviours; the trade-off between image resolution and sensitivity; and visual processing under a range of levels of illumination. The application of this knowledge is also discussed with respect to the conservation of this important group of cartilaginous fishes.
Collapse
Affiliation(s)
- Shaun P Collin
- The Oceans Institute and the Oceans Graduate School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|