1
|
Bernardino PN, Smith WA, Conrad PA, Packham AE, Tamez-Trevino E, Barnum S, Pusterla N. Molecular detection of Sarcocystis neurona in cerebrospinal fluid from 210 horses with suspected neurologic disease. Vet Parasitol 2021; 291:109372. [PMID: 33578198 DOI: 10.1016/j.vetpar.2021.109372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
An ante-mortem diagnosis of equine protozoal myeloencephalitis (EPM) is presently based on clinical presentation, immunodiagnostics performed on serum and cerebrospinal fluid (CSF), and ruling out other neurological disorders. Molecular techniques introduce a novel and promising approach for the detection of protozoal agents in CSF. Hypothesizing that real-time PCR (rtPCR) can be a useful complement to EPM diagnostics, 210 CSF samples from horses suspected of neurological disease with EPM included as a differential diagnosis were tested using rtPCR to detect Sarcocystis neurona DNA and immunodiagnostics targeting antibodies against the same pathogen, performed on serum and CSF samples. Molecular and immunological results were compared with respect to origin of the horse, time of the year, signalment, clinical signs and treatment history. Twenty-five horses tested positive in CSF for S. neurona by rtPCR only, while 30 horses had intrathecally-derived antibodies to S. neurona only (serum to CSF ratio ≤ 64 by indirect fluorescent antibody test - IFAT), and 13 horses tested rtPCR-positive in CSF with evidence of intrathecally-derived antibodies to S. neurona. Previous treatment for EPM was the only variable presenting statistical difference between the two testing modalities, highlighting that animals with history of anti-protozoal treatment were more likely to test positive solely in IFAT, while horses without treatment were more likely to test positive by rtPCR only. The results support the use of molecular diagnosis for EPM caused by S. neurona as a complement to immunodiagnostics. The use of rtPCR in CSF for the detection of S. neurona may improve the diagnostic work-up of neurologic disease suspected horses, especially in animals without previous anti-protozoal treatment.
Collapse
Affiliation(s)
- Pedro N Bernardino
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.
| | - Woutrina A Smith
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Patricia A Conrad
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Andrea E Packham
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Eva Tamez-Trevino
- William R. Pritchard Veterinary Medicine Teaching Hospital, Immunology/Virology Laboratory, 1 Garrod Drive, Davis, CA, 95616, USA
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
2
|
Cooper MK, Phalen DN, Donahoe SL, Rose K, Šlapeta J. The utility of diversity profiling using Illumina 18S rRNA gene amplicon deep sequencing to detect and discriminate Toxoplasma gondii among the cyst-forming coccidia. Vet Parasitol 2015; 216:38-45. [PMID: 26801593 DOI: 10.1016/j.vetpar.2015.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
Next-generation sequencing (NGS) has the capacity to screen a single DNA sample and detect pathogen DNA from thousands of host DNA sequence reads, making it a versatile and informative tool for investigation of pathogens in diseased animals. The technique is effective and labor saving in the initial identification of pathogens, and will complement conventional diagnostic tests to associate the candidate pathogen with a disease process. In this report, we investigated the utility of the diversity profiling NGS approach using Illumina small subunit ribosomal RNA (18S rRNA) gene amplicon deep sequencing to detect Toxoplasma gondii in previously confirmed cases of toxoplasmosis. We then tested the diagnostic approach with species-specific PCR genotyping, histopathology and immunohistochemistry of toxoplasmosis in a Risso's dolphin (Grampus griseus) to systematically characterise the disease and associate causality. We show that the Euk7A/Euk570R primer set targeting the V1-V3 hypervariable region of the 18S rRNA gene can be used as a species-specific assay for cyst-forming coccidia and discriminate T. gondii. Overall, the approach is cost-effective and improves diagnostic decision support by narrowing the differential diagnosis list with more certainty than was previously possible. Furthermore, it supplements the limitations of cryptic protozoan morphology and surpasses the need for species-specific PCR primer combinations.
Collapse
Affiliation(s)
- Madalyn K Cooper
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - David N Phalen
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Shannon L Donahoe
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Jan Šlapeta
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
3
|
Dubey JP, Howe DK, Furr M, Saville WJ, Marsh AE, Reed SM, Grigg ME. An update on Sarcocystis neurona infections in animals and equine protozoal myeloencephalitis (EPM). Vet Parasitol 2015; 209:1-42. [PMID: 25737052 DOI: 10.1016/j.vetpar.2015.01.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 01/27/2023]
Abstract
Equine protozoal myeloencephalitis (EPM) is a serious disease of horses, and its management continues to be a challenge for veterinarians. The protozoan Sarcocystis neurona is most commonly associated with EPM. S. neurona has emerged as a common cause of mortality in marine mammals, especially sea otters (Enhydra lutris). EPM-like illness has also been recorded in several other mammals, including domestic dogs and cats. This paper updates S. neurona and EPM information from the last 15 years on the advances regarding life cycle, molecular biology, epidemiology, clinical signs, diagnosis, treatment and control.
Collapse
Affiliation(s)
- J P Dubey
- United States Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Building 1001, Beltsville, MD 20705-2350, USA.
| | - D K Howe
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | - M Furr
- Marion du Pont Scott Equine Medical Center, Virginia Maryland Regional College of Veterinary Medicine, 17690 Old Waterford Road, Leesburg, VA 20176, USA
| | - W J Saville
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| | - A E Marsh
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Road, Columbus, OH 43210, USA
| | - S M Reed
- Rood and Riddle Equine Hospital, Lexington, KY 40511, USA
| | - M E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National Institutes of Health, National Institutes of Allergy, and Infectious Diseases, 4 Center Drive, Room B1-06, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Lau YL, Chang PY, Subramaniam V, Ng YH, Mahmud R, Ahmad AF, Fong MY. Genetic assemblage of Sarcocystis spp. in Malaysian snakes. Parasit Vectors 2013; 6:257. [PMID: 24010903 PMCID: PMC3847168 DOI: 10.1186/1756-3305-6-257] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/26/2013] [Indexed: 11/23/2022] Open
Abstract
Background Sarcocystis species are protozoan parasites with a wide host range including snakes. Although there were several reports of Sarcocytis species in snakes, their distribution and prevalence are still not fully explored. Methods In this study, fecal specimens of several snake species in Malaysia were examined for the presence of Sarcocystis by PCR of 18S rDNA sequence. Microscopy examination of the fecal specimens for sporocysts was not carried as it was difficult to determine the species of the infecting Sarcocystis. Results Of the 28 snake fecal specimens, 7 were positive by PCR. BLASTn and phylogenetic analyses of the amplified 18S rDNA sequences revealed the snakes were infected with either S. nesbitti, S. singaporensis, S. zuoi or undefined Sarcocystis species. Conclusion This study is the first to report Sarcocystis infection in a cobra, and S. nesbitti in a reticulated python.
Collapse
Affiliation(s)
- Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Coccidial parasites including Cryptosporidium parvum, Cyclospora cayetanensis, Neospora caninum, Toxoplasma gondii and the Eimeria species can cause severe disease of medical and veterinary importance. As many as one-third of the human population may carry T. gondii infection, and Eimeria are thought to cost the global poultry production industry in excess of US$2 billion per annum. Despite their significance, effective vaccines are scarce and have been confined to the veterinary field. As sequencing and genotyping technologies continue to develop, genetic mapping remains a valuable tool for the identification of genes that underlie phenotypic traits of interest and the assembly of contiguous genome sequences. For the coccidian, cross-fertilization still requires in vivo infection, a feature of their life cycle which limits the use of genetic mapping strategies. Importantly, the development of population-based approaches has now removed the need to isolate clonal lines for genetic mapping of selectable traits, complementing the classical clone-based techniques. To date, four coccidial species, representing three genera, have been investigated using genetic mapping. In this review we will discuss recent progress with these species and examine the prospects for future initiatives.
Collapse
Affiliation(s)
- Emily L Clark
- Royal Veterinary College, Department of Pathology and Infectious Diseases, University of London, North Mymms AL9 7TA, UK
| | | |
Collapse
|
6
|
Müller J, Hemphill A. In vitro culture systems for the study of apicomplexan parasites in farm animals. Int J Parasitol 2012; 43:115-24. [PMID: 23000674 DOI: 10.1016/j.ijpara.2012.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 01/02/2023]
Abstract
In vitro culture systems represent powerful tools for the study of apicomplexan parasites such as Cryptosporidium, Eimeria, Sarcocystis, Neospora, Toxoplasma, Besnoitia, Babesia and Theileria, all with high relevance for farm animals. Proliferative stages of these parasites have been cultured in vitro employing a large variety of cell culture and explant approaches. For some, such as Cryptosporidium and Eimeria, the sexual development has been reproduced in cell cultures, while for others, animal experimentation is required to fulfill the life cycle. In vitro cultures have paved the way to exploit the basic biology of these organisms, and had a major impact on the development of tools for diagnostic purposes. With the aid of in vitro cultivation, studies on host-parasite interactions, on factors involved in innate resistance, stage conversion and differentiation, genetics and transfection technology, vaccine candidates and drug effectiveness could be carried out. The use of transgenic parasites has facilitated high-throughput screening of anti-microbial compounds that are active against the proliferative stages. Here, we review the basic features of cell culture-based in vitro systems for apicomplexan parasites that are relevant for farm animals, and discuss their applications with a focus on drug identification and studies of stage differentiation.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| | | |
Collapse
|
7
|
Butkauskas D, Sruoga A, Kutkienė L, Prakas P. INVESTIGATION OF THE PHYLOGENETIC RELATIONSHIPS OF SARCOCYSTIS SPP. FROM GREYLAG (ANSER ANSER) AND WHITE-FRONTED (ANSER ALBIFRONS) GEESE TO OTHER CYST FORMING COCCIDIA USING 18S AND 28S rRNA GENE SEQUENCES. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/13921657.2007.10512823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dalius Butkauskas
- a Institute of Ecology of Vilnius University , Akademijos 2, LT-08412 , Vilnius-21 , Lithuania
| | - Aniolas Sruoga
- a Institute of Ecology of Vilnius University , Akademijos 2, LT-08412 , Vilnius-21 , Lithuania
| | - Liuda Kutkienė
- a Institute of Ecology of Vilnius University , Akademijos 2, LT-08412 , Vilnius-21 , Lithuania
| | - Petras Prakas
- a Institute of Ecology of Vilnius University , Akademijos 2, LT-08412 , Vilnius-21 , Lithuania
| |
Collapse
|
8
|
The mallard duck (Anas platyrhynchos) as intermediate host for Sarcocystis wobeseri sp. nov. from the barnacle goose (Branta leucopsis). Parasitol Res 2010; 107:879-88. [DOI: 10.1007/s00436-010-1945-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
|
9
|
The red fox (Vulpes vulpes) and the arctic fox (Vulpes lagopus) are definitive hosts of Sarcocystis alces and Sarcocystis hjorti from moose (Alces alces). Parasitology 2010; 137:1547-57. [PMID: 20500918 DOI: 10.1017/s0031182010000399] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to determine whether foxes might act as definitive hosts of Sarcocystis alces in moose. In 2 experiments, 6 silver foxes (Vulpes vulpes) and 6 blue foxes (Vulpes lagopus) were fed muscle tissue from moose containing numerous sarcocysts of S. alces, and euthanazed 7-28 days post-infection (p.i.). Intestinal mucosal scrapings and faecal samples were screened microscopically for Sarcocystis oocysts/sporocysts, which were identified to species by means of species-specific primers and sequence analysis targeting the ssu rRNA gene. All foxes in both experiments became infected with Sarcocystis; the oocysts were fully sporulated by 14 days p.i., containing sporocysts measuring 14-15 x 10 microm. Molecular identification revealed that the oocysts/sporocysts belonged to 2 species, S. alces and Sarcocystis hjorti, although sarcocysts of S. hjorti were only identified in moose subsequent to the infection of foxes. In the first experiment, all 8 foxes also became infected with a Hammondia sp. derived from moose, shedding unsporulated, subspherical oocysts, measuring 10-12 microm in diameter, from 6-7 days p.i. onwards. The study proved that canids (the red fox and arctic fox) are definitive hosts for S. alces and S. hjorti, as had been inferred from the phylogenetic position of these species.
Collapse
|
10
|
Molecular biological comparison of different Besnoitia species and stages from different countries. Parasitol Res 2010; 106:889-94. [PMID: 20135147 DOI: 10.1007/s00436-010-1770-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 01/05/2010] [Indexed: 10/19/2022]
|
11
|
Has Sarcocystis neurona Dubey et al., 1991 (Sporozoa: Apicomplexa: Sarcocystidae) cospeciated with its intermediate hosts? Vet Parasitol 2009; 163:307-14. [DOI: 10.1016/j.vetpar.2009.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 03/03/2009] [Accepted: 03/09/2009] [Indexed: 11/20/2022]
|
12
|
The European vectors of Bluetongue virus: are there species complexes, single species or races in Culicoides obsoletus and C. pulicaris detectable by sequencing ITS-1, ITS-2 and 18S-rDNA? Parasitol Res 2009; 105:331-6. [PMID: 19326144 DOI: 10.1007/s00436-009-1414-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 10/21/2022]
Abstract
When studying the vectorship of Culicoides species during the outbreak of Bluetongue disease (BTD) in Central Europe, the question arose whether the most common species and additionally proven vectors of BTV (C. obsoletus and C. pulicaris) are definitive species or do they belong to so-called complexes, since the determination based on morphological criteria is not very significant and knowledge on the life cycles is poor or even absent. Therefore, the present molecular biological study on their ITS-1, ITS-2 and 18SrDNA characteristics was initiated to investigate specimens, which had been determined by their wing morphology during an entomological monitoring in the years 2007 and 2008 at 91 farms in Germany (Mehlhorn et al. 2009). This study revealed novel types respectively different forms, which appeared very similar to Culicoides obsoletus, but showed slightly varying wing patterns. The molecular biological data were compared to those in data banks and combined to provisional dendrograms. The ITS-1 and ITS-2 analysis showed that the specimens determined in the monitoring as C. obsoletus inclusive those with different wing pattern correlate significantly with the data of C. obsoletus in the data banks and surrounded the data bank specifications of C. montanus and C. scoticus so closely that the latter might be only hardly separate species. A similar interpretation can also be drawn when looking at the 18S rDNA dendrogram. Thus, C. scoticus and C. montanus might be races of C. obsoletus rather than separate species. With respect to the ITS-1 and ITS-2 characteristics of C. pulicaris females, which morphologically and by size can be significantly differentiated from C. obsoletus, it was seen that this species is significantly situated on another rame of the dendrograms and in very close relationship to C. punctatus and C. lupicaris, so that the latter might also be only races of C. pulicaris. One of the two other most common species found in Northrhine-Westfalia-C. festivipennis-belongs to the rame of the dendrogram, where C. pulicaris is situated close to C. circumscriptus, while the other common species (C. nubeculosus) has its place close to C. puncticollis and C. variipennis on the rame, where C. obsoletus is found. Thus, this paper again clearly points out that the question "what is a definite species" is far from being solved, if the life cycle is not defined and morphology misleading. However, it also became clear that C. obsoletus and C. pulicaris are Europe-wide occurring species and that several other clearly described separate species are probably only races.
Collapse
|
13
|
Beck HP, Blake D, Dardé ML, Felger I, Pedraza-Díaz S, Regidor-Cerrillo J, Gómez-Bautista M, Ortega-Mora LM, Putignani L, Shiels B, Tait A, Weir W. Molecular approaches to diversity of populations of apicomplexan parasites. Int J Parasitol 2009; 39:175-89. [PMID: 18983997 DOI: 10.1016/j.ijpara.2008.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Hans-Peter Beck
- Swiss Tropical Institute, Socinstrasse 57, CH 4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sarcocystis in moose (Alces alces): molecular identification and phylogeny of six Sarcocystis species in moose, and a morphological description of three new species. Parasitol Res 2008; 103:93-110. [PMID: 18369663 DOI: 10.1007/s00436-008-0936-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
Muscle tissues from 34 moose from Southeastern Norway and two moose from Canada were examined. Sarcocysts were excised and morphologically classified by light microscopy, and some cysts were further examined by scanning electron microscopy or DNA amplification and sequencing at the small subunit (ssu) rRNA gene. In Norwegian moose, three sarcocyst types were recognized, yet five Sarcocystis species were found by sequence analysis. New names were proposed for three species which could be characterised by both morphological and molecular methods, i.e., Sarcocystis alces, Sarcocystis ovalis, and Sarcocystis scandinavica. S. alces was the most prevalent species, whereas S. scandinavica and the two unnamed species were rare and might either use another principal intermediate host or a rare definitive host. The five species in Norwegian moose were different from Sarcocystis alceslatrans isolated from a Canadian moose. Phylogenetic analyses based on complete ssu rRNA gene sequences revealed a close relationship between the six Sarcocystis species from moose and species from reindeer and Sika deer. We conclude that molecular methods are necessary for unequivocal species identification, as different cervid hosts harbour morphologically indistinguishable sarcocysts.
Collapse
|
15
|
Sarcocystis in the birds family Corvidae with description of Sarcocystis cornixi sp. nov. from the hooded crow (Corvus cornix). Parasitol Res 2008; 104:329-36. [DOI: 10.1007/s00436-008-1196-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/10/2008] [Indexed: 11/27/2022]
|
16
|
Mansfield L, Mehler S, Nelson K, Elsheikha H, Murphy A, Knust B, Tanhauser S, Gearhart P, Rossano M, Bowman D, Schott H, Patterson J. Brown-headed cowbirds (Molothrus ater) harbor Sarcocystis neurona and act as intermediate hosts. Vet Parasitol 2008; 153:24-43. [DOI: 10.1016/j.vetpar.2007.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 11/26/2007] [Accepted: 12/04/2007] [Indexed: 11/25/2022]
|
17
|
Phylogenetic relationships between Sarcocystis species from reindeer and other Sarcocystidae deduced from ssu rRNA gene sequences. Vet Parasitol 2008; 151:27-35. [DOI: 10.1016/j.vetpar.2007.09.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/18/2007] [Accepted: 09/28/2007] [Indexed: 11/22/2022]
|
18
|
Elsheikha HM, Mansfield LS. Molecular typing of Sarcocystis neurona: current status and future trends. Vet Parasitol 2007; 149:43-55. [PMID: 17706872 DOI: 10.1016/j.vetpar.2007.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/20/2007] [Accepted: 06/22/2007] [Indexed: 11/26/2022]
Abstract
Sarcocystis neurona is an important protozoal pathogen because it causes the serious neurological disease equine protozoal myeloencephalitis (EPM). The capacity of this organism to cause a wide spectrum of neurological signs in horses and the broad geographic distribution of observed cases in the Americas drive the need for sensitive, reliable and rapid typing methods to characterize strains. Various molecular methods have been developed and used to diagnose EPM due to S. neurona, to identify S. neurona isolates and to determine the heterogeneity and evolutionary relatedness within this species and related Sarcocystis spp. These methods included sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immuno-fluorescent assay (IFA), slide agglutination test (SAT), SnSAG-specific ELISA, random amplified polymorphic DNA (RAPD), PCR-based restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) fingerprinting, and sequence analysis of surface protein genes, ribosomal genes, microsatellite alleles and other molecular markers. Here, the utility of these molecular methods is reviewed and evaluated with respect to the need for molecular approaches that utilize well-characterized polymorphic, simple, independent, and stable genetic markers. These tools have the potential to add to knowledge of the genetic population structure of S. neurona and to provide new insights into the pathogenesis of EPM and S. neurona epidemiology. In particular, these methods provide new tools to address the hypothesis that particular genetic variants are associated with adverse clinical outcomes (severe pathotypes). The ultimate goal is to utilize them in future studies to improve treatment and prevention strategies.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Division of Veterinary Medicine, The School of Veterinary Medicine and Science, The University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | | |
Collapse
|
19
|
Elsheikha HM, Schott HC, Mansfield LS. Genetic variation among isolates of Sarcocystis neurona, the agent of protozoal myeloencephalitis, as revealed by amplified fragment length polymorphism markers. Infect Immun 2006; 74:3448-54. [PMID: 16714575 PMCID: PMC1479295 DOI: 10.1128/iai.01215-05] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sarcocystis neurona causes serious neurological disease in horses and other vertebrates in the Americas. Based on epidemiological data, this parasite has recently emerged. Here, the genetic diversity of Sarcocystis neurona was evaluated using the amplified fragment length polymorphism (AFLP) method. Fifteen S. neurona taxa from different regions collected over the last 10 years were used; six isolates were from clinically diseased horses, eight isolates were from wild-caught opossums (Didelphis virginiana), and one isolate was from a cowbird (Molothrus ater). Additionally, four outgroup taxa were also fingerprinted. Nine primer pairs were used to generate AFLP patterns, with a total number of amplified fragments ranging from 30 to 60, depending on the isolate and primers tested. Based on the presence/absence of amplified AFLP fragments and pairwise similarity values, all the S. neurona isolates tested were clustered in one monophyletic group. No significant correlation could be found between genomic similarity and host origin of the S. neurona isolates. AFLP revealed significant intraspecific genetic variations, and S. neurona appeared as a highly variable species. Furthermore, linkage disequilibrium analysis suggested that S. neurona populations within Michigan have an intermediate type of population structure that includes characteristics of both clonal and panamictic population structures. AFLP is a reliable molecular technique that has provided one of the most informative approaches to ascertain phylogenetic relationships in S. neurona and its closest relatives, allowing them to be clustered by relative similarity using band matching and unweighted pair group method with arithmetic mean analysis, which may be applicable to other related protozoal species.
Collapse
Affiliation(s)
- H M Elsheikha
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|