1
|
Lykins JD, Filippova EV, Halavaty AS, Minasov G, Zhou Y, Dubrovska I, Flores KJ, Shuvalova LA, Ruan J, El Bissati K, Dovgin S, Roberts CW, Woods S, Moulton JD, Moulton H, McPhillie MJ, Muench SP, Fishwick CWG, Sabini E, Shanmugam D, Roos DS, McLeod R, Anderson WF, Ngô HM. CSGID Solves Structures and Identifies Phenotypes for Five Enzymes in Toxoplasma gondii. Front Cell Infect Microbiol 2018; 8:352. [PMID: 30345257 PMCID: PMC6182094 DOI: 10.3389/fcimb.2018.00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii, an Apicomplexan parasite, causes significant morbidity and mortality, including severe disease in immunocompromised hosts and devastating congenital disease, with no effective treatment for the bradyzoite stage. To address this, we used the Tropical Disease Research database, crystallography, molecular modeling, and antisense to identify and characterize a range of potential therapeutic targets for toxoplasmosis. Phosphoglycerate mutase II (PGMII), nucleoside diphosphate kinase (NDK), ribulose phosphate 3-epimerase (RPE), ribose-5-phosphate isomerase (RPI), and ornithine aminotransferase (OAT) were structurally characterized. Crystallography revealed insights into the overall structure, protein oligomeric states and molecular details of active sites important for ligand recognition. Literature and molecular modeling suggested potential inhibitors and druggability. The targets were further studied with vivoPMO to interrupt enzyme synthesis, identifying the targets as potentially important to parasitic replication and, therefore, of therapeutic interest. Targeted vivoPMO resulted in statistically significant perturbation of parasite replication without concomitant host cell toxicity, consistent with a previous CRISPR/Cas9 screen showing PGM, RPE, and RPI contribute to parasite fitness. PGM, RPE, and RPI have the greatest promise for affecting replication in tachyzoites. These targets are shared between other medically important parasites and may have wider therapeutic potential.
Collapse
Affiliation(s)
- Joseph D. Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Andrei S. Halavaty
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - George Minasov
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, United States
| | - Ievgeniia Dubrovska
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristin J. Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ludmilla A. Shuvalova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jiapeng Ruan
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, United States
| | - Sarah Dovgin
- Illinois Math and Science Academy, Aurora, IL, United States
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | | | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Martin J. McPhillie
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Colin W. G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Elisabetta Sabini
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - David S. Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, IL, United States
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL, United States
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Huân M. Ngô
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- BrainMicro LLC, New Haven, CT, United States
| |
Collapse
|
2
|
Molecular, biochemical characterization and assessment of immunogenic potential of cofactor-independent phosphoglycerate mutase against Leishmania donovani: a step towards exploring novel vaccine candidate. Parasitology 2017; 145:508-526. [PMID: 28691653 DOI: 10.1017/s0031182017001160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite immense efforts, vaccine against visceral leishmaniasis has yet not been developed. Earlier our proteomic study revealed a novel protein, cofactor-independent phoshoglycerate mutase (LdiPGAM), an important enzyme in glucose metabolism, in T helper cells type 1 (Th1) stimulatory region of soluble Leishmania donovani antigen. In this study, LdiPGAM was biochemically and molecularly characterized and evaluated for its immunogenicity and prophylactic efficacy against L. donovani. Immunogenicity of recombinant LdiPGAM (rLdiPGAM) was initially assessed in naïve hamsters immunized with it by analysing mRNA expression of inducible nitric oxide (NO) synthase (iNOS) and other Th1/T helper cells type 2 cytokines, which revealed an upregulation of Th1 cytokines along with iNOS. Immunogenicity of rLdiPGAM was further evaluated in lymphocytes of treated Leishmania-infected hamsters and peripheral blood mononuclear cells of Leishmania patients in clinical remission by various parameters, viz. lymphoproliferation assay and NO production (hamsters and patients) and levels of various cytokines (patients). rLdiPGAM induced remarkable Lymphoproliferative response and NO production in treated Leishmania-infected hamsters as well as in patients and increase in interferon gamma (IFN-γ), interleukin-12 (IL-12p40) responses in Leishmania patients in clinical remission. Vaccination with rLdiPGAM exerted considerable prophylactic efficacy (73%) supported by increase in mRNA expression of iNOS, IFN-γ and IL-12p40 with decrease in transforming growth factor beta and interleukin-10. Above results indicate the importance of rLdiPGAM protein as a potential vaccine candidate against visceral leishmaniasis.
Collapse
|
3
|
Crowther GJ, Booker ML, He M, Li T, Raverdy S, Novelli JF, He P, Dale NRG, Fife AM, Barker RH, Kramer ML, Van Voorhis WC, Carlow CKS, Wang MW. Cofactor-independent phosphoglycerate mutase from nematodes has limited druggability, as revealed by two high-throughput screens. PLoS Negl Trop Dis 2014; 8:e2628. [PMID: 24416464 PMCID: PMC3886921 DOI: 10.1371/journal.pntd.0002628] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/21/2013] [Indexed: 11/19/2022] Open
Abstract
Cofactor-independent phosphoglycerate mutase (iPGAM) is essential for the growth of C. elegans but is absent from humans, suggesting its potential as a drug target in parasitic nematodes such as Brugia malayi, a cause of lymphatic filariasis (LF). iPGAM's active site is small and hydrophilic, implying that it may not be druggable, but another binding site might permit allosteric inhibition. As a comprehensive assessment of iPGAM's druggability, high-throughput screening (HTS) was conducted at two different locations: ∼220,000 compounds were tested against the C. elegans iPGAM by Genzyme Corporation, and ∼160,000 compounds were screened against the B. malayi iPGAM at the National Center for Drug Screening in Shanghai. iPGAM's catalytic activity was coupled to downstream glycolytic enzymes, resulting in NADH consumption, as monitored by a decline in visible-light absorbance at 340 nm. This assay performed well in both screens (Z′-factor >0.50) and identified two novel inhibitors that may be useful as chemical probes. However, these compounds have very modest potency against the B. malayi iPGAM (IC50 >10 µM) and represent isolated singleton hits rather than members of a common scaffold. Thus, despite the other appealing properties of the nematode iPGAMs, their low druggability makes them challenging to pursue as drug targets. This study illustrates a “druggability paradox” of target-based drug discovery: proteins are generally unsuitable for resource-intensive HTS unless they are considered druggable, yet druggability is often difficult to predict in the absence of HTS data. Parasitic worms like Brugia malayi cause widespread lymphatic filariasis (LF) in southeast Asia and sub-Saharan Africa. The adult worms causing most of the symptoms of LF are difficult to treat with existing drugs. As a possible step toward new LF drugs, we searched for inhibitors of the B. malayi cofactor-independent phosphoglycerate mutase (iPGAM), an enzyme thought to be critical to survival and development of this parasite. Despite testing over 100,000 compounds at each of two screening centers, we found only two compounds that consistently inhibited the B. malayi enzyme more strongly than the cofactor-dependent enzyme found in humans. These compounds have limited potency and are not especially great starting points for drug development. The 3-dimensional structure of iPGAM suggests that the active site is difficult to access from the surrounding solvent, which may partly explain our very low yield of inhibitors. We conclude that iPGAM may not be an ideal drug target in B. malayi or related organisms because it is difficult to inhibit with druglike compounds.
Collapse
Affiliation(s)
- Gregory J. Crowther
- Division of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Michael L. Booker
- Genzyme Corporation, Waltham, Massachusetts, United States of America
| | - Min He
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ting Li
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Sylvine Raverdy
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Jacopo F. Novelli
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Panqing He
- Division of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Natalie R. G. Dale
- Division of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Amy M. Fife
- Genzyme Corporation, Waltham, Massachusetts, United States of America
| | - Robert H. Barker
- Genzyme Corporation, Waltham, Massachusetts, United States of America
| | - Martin L. Kramer
- Genzyme Corporation, Waltham, Massachusetts, United States of America
| | - Wesley C. Van Voorhis
- Division of Allergy & Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Clotilde K. S. Carlow
- Division of Parasitology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
4
|
Singh PK, Kushwaha S, Mohd S, Pathak M, Misra-Bhattacharya S. In vitro gene silencing of independent phosphoglycerate mutase (iPGM) in the filarial parasite Brugia malayi. Infect Dis Poverty 2013; 2:5. [PMID: 23849829 PMCID: PMC3707094 DOI: 10.1186/2049-9957-2-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/21/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The phosphoglycerate mutase (PGM) enzyme catalyzes the interconversion of 2- and 3-phosphoglycerate in the glycolytic /gluconeogenic pathways that are present in the majority of cellular organisms. They can be classified as cofactor-dependent PGM (dPGM) or cofactor-independent PGM (iPGM). Vertebrates, yeasts, and many bacteria have only dPGM, while higher plants, nematodes, archaea, and many other bacteria have only iPGM. A small number of bacteria, including Escherichia coli and certain archaea and protozoa, contain both forms. The silencing of ipgm in Caenorhabditis elegans (C. elegans) has demonstrated the importance of this enzyme in parasite viability and, therefore, its potential as an anthelmintic drug target. In this study, the role of the Brugia malayi (B. malayi) ipgm in parasite viability, microfilaria release, embryogenesis, and in vivo development of infective larvae post-gene silencing was explored by applying ribonucleic acid (RNA) interference studies. RESULTS The in vitro ipgm gene silencing by small interfering RNA (siRNA) leads to severe phenotypic deformities in the intrauterine developmental stages of female worms with a drastic reduction (~90%) in the motility of adult parasites and a significantly reduced (80%) release of microfilariae (mf) by female worms in vitro. Almost half of the in vitro-treated infective L3 displayed sluggish movement. The in vivo survival and development of siRNA-treated infective larvae (L3) was investigated in the peritoneal cavity of jirds where a ~45% reduction in adult worm establishment was observed. CONCLUSION The findings clearly suggest that iPGM is essential for both larval and adult stages of B. malayi parasite and that it plays a pivotal role in female worm embryogenesis. The results thus validate the Bm-iPGM as a putative anti-filarial drug target.
Collapse
Affiliation(s)
- Prashant Kumar Singh
- Division of Parasitology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226021, India
| | - Susheela Kushwaha
- Division of Parasitology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226021, India
| | - Shahab Mohd
- Division of Parasitology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226021, India
| | - Manisha Pathak
- Division of Parasitology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226021, India
| | - Shailja Misra-Bhattacharya
- Division of Parasitology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, UP, 226021, India
| |
Collapse
|
5
|
Mercaldi GF, Pereira HM, Cordeiro AT, Michels PAM, Thiemann OH. Structural role of the active-site metal in the conformation of Trypanosoma brucei phosphoglycerate mutase. FEBS J 2012; 279:2012-21. [PMID: 22458781 DOI: 10.1111/j.1742-4658.2012.08586.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoglycerate mutases (PGAMs) participate in both the glycolytic and the gluconeogenic pathways in reversible isomerization of 3-phosphoglycerate and 2-phosphoglycerate. PGAMs are members of two distinct protein families: enzymes that are dependent on or independent of the 2,3-bisphosphoglycerate cofactor. We determined the X-ray structure of the monomeric Trypanosoma brucei independent PGAM (TbiPGAM) in its apoenzyme form, and confirmed this observation by small angle X-ray scattering data. Comparing the TbiPGAM structure with the Leishmania mexicana independent PGAM structure, previously reported with a phosphoglycerate molecule bound to the active site, revealed the domain movement resulting from active site occupation. The structure reported here shows the interaction between Asp319 and the metal bound to the active site, and its contribution to the domain movement. Substitution of the metal-binding residue Asp319 by Ala resulted in complete loss of independent PGAM activity, and showed for the first time its involvement in the enzyme's function. As TbiPGAM is an attractive molecular target for drug development, the apoenzyme conformation described here provides opportunities for its use in structure-based drug design approaches. Database Structural data for the Trypanosoma brucei 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (iPGAM) has been deposited with the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank under code 3NVL.
Collapse
Affiliation(s)
- Gustavo F Mercaldi
- Instituto de Física de São Carlos, Grupo de Cristalografia, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
6
|
Identification and characterization of the cofactor-independent phosphoglycerate mutases of Dirofilaria immitis and its Wolbachia endosymbiont. Vet Parasitol 2011; 176:350-6. [DOI: 10.1016/j.vetpar.2011.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Evolution of bacterial phosphoglycerate mutases: non-homologous isofunctional enzymes undergoing gene losses, gains and lateral transfers. PLoS One 2010; 5:e13576. [PMID: 21187861 PMCID: PMC2964296 DOI: 10.1371/journal.pone.0013576] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/27/2010] [Indexed: 11/28/2022] Open
Abstract
Background The glycolytic phosphoglycerate mutases exist as non-homologous isofunctional enzymes (NISE) having independent evolutionary origins and no similarity in primary sequence, 3D structure, or catalytic mechanism. Cofactor-dependent PGM (dPGM) requires 2,3-bisphosphoglycerate for activity; cofactor-independent PGM (iPGM) does not. The PGM profile of any given bacterium is unpredictable and some organisms such as Escherichia coli encode both forms. Methods/Principal Findings To examine the distribution of PGM NISE throughout the Bacteria, and gain insight into the evolutionary processes that shape their phyletic profiles, we searched bacterial genome sequences for the presence of dPGM and iPGM. Both forms exhibited patchy distributions throughout the bacterial domain. Species within the same genus, or even strains of the same species, frequently differ in their PGM repertoire. The distribution is further complicated by the common occurrence of dPGM paralogs, while iPGM paralogs are rare. Larger genomes are more likely to accommodate PGM paralogs or both NISE forms. Lateral gene transfers have shaped the PGM profiles with intradomain and interdomain transfers apparent. Archaeal-type iPGM was identified in many bacteria, often as the sole PGM. To address the function of PGM NISE in an organism encoding both forms, we analyzed recombinant enzymes from E. coli. Both NISE were active mutases, but the specific activity of dPGM greatly exceeded that of iPGM, which showed highest activity in the presence of manganese. We created PGM null mutants in E. coli and discovered the ΔdPGM mutant grew slowly due to a delay in exiting stationary phase. Overexpression of dPGM or iPGM overcame this defect. Conclusions/Significance Our biochemical and genetic analyses in E. coli firmly establish dPGM and iPGM as NISE. Metabolic redundancy is indicated since only larger genomes encode both forms. Non-orthologous gene displacement can fully account for the non-uniform PGM distribution we report across the bacterial domain.
Collapse
|
8
|
Foster JM, Raverdy S, Ganatra MB, Colussi PA, Taron CH, Carlow CKS. The Wolbachia endosymbiont of Brugia malayi has an active phosphoglycerate mutase: a candidate target for anti-filarial therapies. Parasitol Res 2008; 104:1047-52. [PMID: 19043737 DOI: 10.1007/s00436-008-1287-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 11/11/2008] [Indexed: 11/25/2022]
Abstract
Phosphoglycerate mutases (PGM) interconvert 2- and 3-phosphoglycerate in the glycolytic and gluconeogenic pathways. A putative cofactor-independent phosphoglycerate mutase gene (iPGM) was identified in the genome sequence of the Wolbachia endosymbiont from the filarial nematode, Brugia malayi (wBm). Since iPGM has no sequence or structural similarity to the cofactor-dependent phosphoglycerate mutase (dPGM) found in mammals, it may represent an attractive Wolbachia drug target. In the present study, wBm-iPGM cloned and expressed in Escherichia coli was mostly insoluble and inactive. However, the protein was successfully produced in the yeast Kluyveromyces lactis and the purified recombinant wBm-iPGM showed typical PGM activity. Our results provide a foundation for further development of wBm-iPGM as a promising new drug target for novel anti-filarial therapies that selectively target the endosymbiont.
Collapse
Affiliation(s)
- Jeremy M Foster
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | | | | | | | | | |
Collapse
|
9
|
Raverdy S, Zhang Y, Foster J, Carlow CKS. Molecular and biochemical characterization of nematode cofactor independent phosphoglycerate mutases. Mol Biochem Parasitol 2007; 156:210-6. [PMID: 17897734 DOI: 10.1016/j.molbiopara.2007.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/10/2007] [Accepted: 08/13/2007] [Indexed: 11/20/2022]
Abstract
Phosphoglycerate mutase (PGM, EC 5.4.2.1) catalyzes the isomerization of 3-phosphoglycerate and 2-phosphoglycerate in glycolysis and gluconeogenesis. Two distinct types of PGM exist in nature, one that requires 2,3-bisphosphoglycerate as a cofactor (dPGM) and another that does not (iPGM). The two enzymes are structurally distinct and possess different mechanisms of action. In any particular organism, one form may exist or both. Nematodes possess the iPGM form whereas mammals have dPGM. In the present study, we have cloned and expressed iPGM from Onchocerca volvulus and described the catalytic properties of O. volvulus, Brugia malayi and Caenorhabditis elegans iPGM enzymes. Temperature and pH optima were determined for each enzyme. Like other iPGM enzymes, the activities of the nematode iPGM enzymes were dependent on the presence of divalent ions. Inactivation by EDTA could be restored most effectively by magnesium and manganese ions. Kinetic parameters and specific activities of the various recombinant enzymes were determined. The high similarity in catalytic properties among the enzymes indicates that a single enzyme inhibitor would likely be effective against all nematode enzymes. Inhibition of iPGM activity in vivo may lead to lethality as indicated by RNAi studies in C. elegans. Our results support the development of iPGM as a promising drug target in parasitic nematodes.
Collapse
Affiliation(s)
- Sylvine Raverdy
- New England Biolabs, Division of Parasitology, 240 County Road, Ipswich, MA 01938, USA
| | | | | | | |
Collapse
|