1
|
Rivara-Espasandín M, Palumbo MC, Sosa EJ, Radío S, Turjanski AG, Sotelo-Silveira J, Fernandez Do Porto D, Smircich P. Omics data integration facilitates target selection for new antiparasitic drugs against TriTryp infections. Front Pharmacol 2023; 14:1136321. [PMID: 37089958 PMCID: PMC10115950 DOI: 10.3389/fphar.2023.1136321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction:Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., commonly referred to as TriTryps, are a group of protozoan parasites that cause important human diseases affecting millions of people belonging to the most vulnerable populations worldwide. Current treatments have limited efficiencies and can cause serious side effects, so there is an urgent need to develop new control strategies. Presently, the identification and prioritization of appropriate targets can be aided by integrative genomic and computational approaches.Methods: In this work, we conducted a genome-wide multidimensional data integration strategy to prioritize drug targets. We included genomic, transcriptomic, metabolic, and protein structural data sources, to delineate candidate proteins with relevant features for target selection in drug development.Results and Discussion: Our final ranked list includes proteins shared by TriTryps and covers a range of biological functions including essential proteins for parasite survival or growth, oxidative stress-related enzymes, virulence factors, and proteins that are exclusive to these parasites. Our strategy found previously described candidates, which validates our approach as well as new proteins that can be attractive targets to consider during the initial steps of drug discovery.
Collapse
Affiliation(s)
- Martin Rivara-Espasandín
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miranda Clara Palumbo
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel J. Sosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Santiago Radío
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrián G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Dario Fernandez Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| |
Collapse
|
2
|
Barbosa GR, Marana SR, Stolf BS. Characterization of Leishmania ( L.) amazonensis oligopeptidase B and its role in macrophage infection. Parasitology 2022; 149:1411-1418. [PMID: 35703092 PMCID: PMC11010554 DOI: 10.1017/s0031182022000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 11/07/2022]
Abstract
Leishmania spp. are parasitic protozoa that cause leishmaniasis, a disease endemic in 98 countries. Leishmania promastigotes are transmitted by the vector and differentiate into amastigotes within phagocytic cells of the vertebrate host. To survive in multiple and hostile environments, the parasite has several virulence factors. Oligopeptidase B (OPB) is a serine peptidase present in prokaryotes, some eukaryotes and some higher plants. It has been considered a virulence factor in trypanosomatids, but only a few studies, performed with Old World species, analysed its role in Leishmania virulence or infectivity.L. (L.) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. The L. (L.) amazonensis OPB encoding gene has been sequenced and analysed in silico but has never been expressed. In this work, we produced recombinant L. (L.) amazonensis OPB and showed that its pH preferences, Km and inhibition patterns are similar to those reported for L. (L.) major and L. (L.) donovani OPBs. Since Leishmania is known to secrete OPB, we performed in vitro infection assays using the recombinant enzyme. Our results showed that active OPB increased in vitro infection by L. (L.) amazonensis when present before and throughout infection. Our findings suggest that OPB is relevant to L. (L.) amazonensis infection, and that potential drugs acting through OPB will probably be effective for Old and New World Leishmania species. OPB inhibitors may eventually be explored for leishmaniasis chemotherapy.
Collapse
Affiliation(s)
- Gustavo Rolim Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandro Roberto Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Motta FN, Azevedo CDS, Neves BP, Araújo CND, Grellier P, Santana JMD, Bastos IMD. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases. Biochimie 2019; 167:207-216. [DOI: 10.1016/j.biochi.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
|
4
|
Understanding serine proteases implications on Leishmania spp lifecycle. Exp Parasitol 2018; 184:67-81. [DOI: 10.1016/j.exppara.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022]
|
5
|
Pratti JES, Ramos TD, Pereira JC, da Fonseca-Martins AM, Maciel-Oliveira D, Oliveira-Silva G, de Mello MF, Chaves SP, Gomes DCO, Diaz BL, Rossi-Bergmann B, de Matos Guedes HL. Efficacy of intranasal LaAg vaccine against Leishmania amazonensis infection in partially resistant C57Bl/6 mice. Parasit Vectors 2016; 9:534. [PMID: 27716449 PMCID: PMC5052793 DOI: 10.1186/s13071-016-1822-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/29/2016] [Indexed: 12/12/2022] Open
Abstract
Background We have previously demonstrated that intranasal vaccination of highly susceptible BALB/c mice with whole Leishmania amazonensis antigens (LaAg) leads to protection against murine cutaneous leishmaniasis. Here, we evaluate the response of partially resistant C57BL/6 mice to vaccination as a more representative experimental model of human cutaneous leishmaniasis. Methods C57BL/6 mice from different animal facilities were infected with L. amazonensis (Josefa strain) to establish the profile of infection. Intranasal vaccination was performed before the infection challenge with two doses of 10 μg of LaAg alone or associated with the adjuvant ADDAVAX® by instillation in the nostrils. The lesion progression was measured with a dial caliper and the parasite load by limited dilution assay in the acute and chronic phases of infection. Cytokines were quantified by ELISA in the homogenates of infected footpads. Results C57BL/6 mice from different animal facilities presented the same L. amazonensis infection profile, displaying a progressive acute phase followed by a controlled chronic phase. Parasites cultured in M199 and Schneider’s media were equally infective. Intranasal vaccination with LaAg led to milder acute and chronic phases of the disease. The mechanism of protection was associated with increased production of IFN-gamma in the infected tissue as measured in the acute phase. Association with the ADDAVAX® adjuvant did not improve the efficacy of intranasal LaAg vaccination. Rather, ADDAVAX® reduced vaccination efficacy. Conclusion This study demonstrates that the efficacy of adjuvant-free intranasal vaccination with LaAg is extendable to the more resistant C57Bl/6 mouse model of infection with L. amazonensis, and is thus not exclusive to the susceptible BALB/c model. These results imply that mucosal immunomodulation by LaAg leads to peripheral protection irrespective of the genetic background of the host. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1822-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliana Elena Silveira Pratti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tadeu Diniz Ramos
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joyce Carvalho Pereira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Diogo Maciel-Oliveira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel Oliveira-Silva
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mirian França de Mello
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana Passos Chaves
- Laboratório Integrado de Imunoparasitologia, Campus Macaé-Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Daniel Claudio Oliveira Gomes
- Laboratório de Imunobiologia, Núcleo de Doenças Infecciosas/Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Bruno Lourenço Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bartira Rossi-Bergmann
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Herbert Leonel de Matos Guedes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,Núcleo Multidisciplinar de Pesquisa UFRJ-Xerém em Biologia (NUMPEX-BIO), Polo Avançado de Xerém-Universidade Federal do Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Teixeira PC, Velasquez LG, Lepique AP, de Rezende E, Bonatto JMC, Barcinski MA, Cunha-Neto E, Stolf BS. Regulation of Leishmania (L.) amazonensis protein expression by host T cell dependent responses: differential expression of oligopeptidase B, tryparedoxin peroxidase and HSP70 isoforms in amastigotes isolated from BALB/c and BALB/c nude mice. PLoS Negl Trop Dis 2015; 9:e0003411. [PMID: 25692783 PMCID: PMC4333223 DOI: 10.1371/journal.pntd.0003411] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
Leishmaniasis is an important disease that affects 12 million people in 88 countries, with 2 million new cases every year. Leishmania amazonensis is an important agent in Brazil, leading to clinical forms varying from localized (LCL) to diffuse cutaneous leishmaniasis (DCL). One interesting issue rarely analyzed is how host immune response affects Leishmania phenotype and virulence. Aiming to study the effect of host immune system on Leishmania proteins we compared proteomes of amastigotes isolated from BALB/c and BALB/c nude mice. The athymic nude mice may resemble patients with diffuse cutaneous leishmaniasis, considered T-cell hyposensitive or anergic to Leishmania's antigens. This work is the first to compare modifications in amastigotes' proteomes driven by host immune response. Among the 44 differentially expressed spots, there were proteins related to oxidative/nitrosative stress and proteases. Some correspond to known Leishmania virulence factors such as OPB and tryparedoxin peroxidase. Specific isoforms of these two proteins were increased in parasites from nude mice, suggesting that T cells probably restrain their posttranslational modifications in BALB/c mice. On the other hand, an isoform of HSP70 was increased in amastigotes from BALB/c mice. We believe our study may allow identification of potential virulence factors and ways of regulating their expression.
Collapse
Affiliation(s)
| | - Leonardo Garcia Velasquez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
de Matos Guedes HL, da Silva Costa BL, Chaves SP, de Oliveira Gomes DC, Nosanchuk JD, De Simone SG, Rossi-Bergmann B. Intranasal vaccination with extracellular serine proteases of Leishmania amazonensis confers protective immunity to BALB/c mice against infection. Parasit Vectors 2014; 7:448. [PMID: 25239157 PMCID: PMC4261548 DOI: 10.1186/1756-3305-7-448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022] Open
Abstract
Background Previously, we demonstrated that unlike subcutaneous or intramuscular vaccination, intranasal vaccination of BALB/c mice with whole Leishmania amazonensis antigens leads to protection against cutaneous leishmaniasis. Here, the role of parasite serine proteases in the protective immunity was investigated. Findings Serine Proteases were partially purified from both soluble (LaSP-Sol) and extracellular (LaSP-Ex) Leishmania amazonensis promastigote extracts by aprotinin-agarose chromatography. BALB/c mice were intranasally immunized with LaSP-Sol and LaSP-Ex prior to infection with L. amazonensis. LaSP-Ex but not LaSP-Sol vaccination led to significantly smaller lesions and parasite burdens as compared with non-vaccinated controls. Protection was accompanied by systemic Th1 polarization with increased IFN-γ and decreased IL-4 and IL-10 splenic production. Likewise, increased production of IFN-γ, IL-12 and IL-4 concomitant with decreased TGF-β and TNF-α was locally observed in the infected footpad. Conclusion This study indicates that extracellular serine proteases of L. amazonensis are strong candidates for a more defined intranasal vaccine against cutaneous leishmaniasis. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-448) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Herbert Leonel de Matos Guedes
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abrahão RQ, Franciosi AC, Andrade D, Juliano L, Juliano MA, Giorgi R, Dale CS. Oligopeptidases B from Trypanossoma cruzi and Trypanossoma brucei Inhibit Inflammatory Pain in Mice by Targeting Serotoninergic Receptors. Inflammation 2013; 36:705-12. [DOI: 10.1007/s10753-013-9595-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Motta FN, Bastos IMD, Faudry E, Ebel C, Lima MM, Neves D, Ragno M, Barbosa JARG, de Freitas SM, Santana JM. The Trypanosoma cruzi virulence factor oligopeptidase B (OPBTc) assembles into an active and stable dimer. PLoS One 2012; 7:e30431. [PMID: 22276197 PMCID: PMC3261901 DOI: 10.1371/journal.pone.0030431] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/20/2011] [Indexed: 01/31/2023] Open
Abstract
Oligopeptidase B, a processing enzyme of the prolyl oligopeptidase family, is considered as an important virulence factor in trypanosomiasis. Trypanosoma cruzi oligopeptidase B (OPBTc) is involved in host cell invasion by generating a Ca(2+)-agonist necessary for recruitment and fusion of host lysosomes at the site of parasite attachment. The underlying mechanism remains unknown and further structural and functional characterization of OPBTc may help clarify its physiological function and lead to the development of new therapeutic molecules to treat Chagas disease. In the present work, size exclusion chromatography and analytical ultracentrifugation experiments demonstrate that OPBTc is a dimer in solution, an association salt and pH-resistant and independent of intermolecular disulfide bonds. The enzyme retains its dimeric structure and is fully active up to 42°C. OPBTc is inactivated and its tertiary, but not secondary, structure is disrupted at higher temperatures, as monitored by circular dichroism and fluorescence spectroscopy. It has a highly stable secondary structure over a broad range of pH, undergoes subtle tertiary structure changes at low pH and is less stable under moderate ionic strength conditions. These results bring new insights into the structural properties of OPBTc, contributing to future studies on the rational design of OPBTc inhibitors as a promising strategy for Chagas disease chemotherapy.
Collapse
Affiliation(s)
- Flávia Nader Motta
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | - Izabela M. D. Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília, Brazil
- Faculty of Ceilândia, The University of Brasília, Brasília, Brazil
| | - Eric Faudry
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
| | - Christine Ebel
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
- CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
- Université Joseph Fourier – Grenoble 1, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
| | - Meire M. Lima
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | - David Neves
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | - Michel Ragno
- INSERM, UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- UJF-Grenoble 1, Biology of Cancer and Infection, Grenoble, France
- CEA, DSV/iRTSV, Biology of Cancer and Infection, Grenoble, France
| | - João Alexandre R. G. Barbosa
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Sônia Maria de Freitas
- Laboratory of Biophysics, Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília, Brazil
- * E-mail:
| |
Collapse
|
10
|
Bourguignon SC, Cavalcanti DFB, de Souza AMT, Castro HC, Rodrigues CR, Albuquerque MG, Santos DO, da Silva GG, da Silva FC, Ferreira VF, de Pinho RT, Alves CR. Trypanosoma cruzi: insights into naphthoquinone effects on growth and proteinase activity. Exp Parasitol 2010; 127:160-6. [PMID: 20647011 DOI: 10.1016/j.exppara.2010.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 11/18/2022]
Abstract
In this study we compared the effects of naphthoquinones (α-lapachone, β-lapachone, nor-β-lapachone and Epoxy-α-lap) on growth of Trypanosoma cruzi epimastigotes forms, and on viability of VERO cells. In addition we also experimentally analyzed the most active compounds inhibitory profile against T. cruzi serine- and cysteine-proteinases activity and theoretically evaluated them against cruzain, the major T. cruzi cysteine proteinase by using a molecular docking approach. Our results confirmed β-lapachone and Epoxy-α-lap with a high trypanocidal activity in contrast to α-lapachone and nor-β-lapachone whereas Epoxy-α-lap presented the safest toxicity profile against VERO cells. Interestingly the evaluation of the active compounds effects against T. cruzi cysteine- and serine-proteinases activities revealed different targets for these molecules. β-Lapachone is able to inhibit the cysteine-proteinase activity of T. cruzi proteic whole extract and of cruzain, similar to E-64, a classical cysteine-proteinase inhibitor. Differently, Epoxy-α-lap inhibited the T. cruzi serine-proteinase activity, similar to PMSF, a classical serine-proteinase inhibitor. In agreement to these biological profiles in the enzymatic assays, our theoretical analysis showed that E-64 and β-lapachone interact with the cruzain specific S2 pocket and active site whereas Epoxy-α-lap showed no important interactions. Overall, our results infer that β-lapachone and Epoxy-α-lap compounds may inhibit T. cruzi epimastigotes growth by affecting T. cruzi different proteinases. Thus the present data shows the potential of these compounds as prototype of protease inhibitors on drug design studies for developing new antichagasic compounds.
Collapse
Affiliation(s)
- Saulo C Bourguignon
- Universidade Federal Fluminense, Instituto de Biologia, 24020-150 Niterói, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|