1
|
Ghebremichael ST, Meng X, Wei J, Yang Y, Huang Q, Luo L, Xiang H, Chen J, Abo-Kadoum MA, Li T, Liu X, Bao J, Zhou Z, Pan G. Prevalence and genotyping distribution of Enterocytozoon bieneusi in diarrheic pigs in Chongqing and Sichuan provinces, China. Front Microbiol 2022; 13:1025613. [PMID: 36312914 PMCID: PMC9608567 DOI: 10.3389/fmicb.2022.1025613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The microsporidian fungal pathogen Enterocytozoon bieneusi is a unicellular parasite that infects humans and various animals, including pigs. Currently, there are few data on E. bieneusi infection a in diarrheic pigs in Chongqing and Sichuan Provinces, China. This study aims to determine the prevalence and genotype distribution of E. bieneusi in diarrheic pigs. In total, 514 fecal samples from diarrheic pigs were obtained from 14 large-scale farms in Chongqing and Sichuan Provinces (326 suckling pigs, 17 weaned pigs, 65 fattening pigs, and 106 sows). To identify the E. bieneusi genotypes, genomic DNA was isolated from the samples and tested by nested PCR, targeting the internal transcribed spacer region of the rRNA followed by DNA sequence analysis. The overall prevalence of E. bieneusi was 79.8% (410/514), with rates of 84.9% (90/106) in sows and 64.7% (11/17) in weaned pigs. We found 61 different genotypes, including seven known genotypes (E, F, CHG1, Peru8, CAF1, B, and BEB17) and 54 novel genotypes. These 54 new genotypes are variants of eight known genotypes (SDD2, A, B, HLJD-IV, PigSpEb1, O, JLD-I, and BEB17) based on their sequence similarities. Phylogenetically, all of the identified genotypes clustered with counterparts belonging to Group 1 and Group 2 of E. bieneusi. Therefore, we found a higher prevalence of E. bieneusi in sows than in preweaned and weaned pigs. These findings indicate that diarrheic pigs could be a potential reservoir host, which can contaminate the environment and be a source of microsporidia in humans and other animals.
Collapse
Affiliation(s)
- Samson Teweldeberhan Ghebremichael
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Department of Biology, Mai Nefhi College of Science, Mai-Nefhi, Eritrea
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yujiao Yang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingyuan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Lie Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Heng Xiang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - M. A. Abo-Kadoum
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assuit Branch, Cairo, Egypt
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Xiao Liu
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- *Correspondence: Guoqing Pan,
| |
Collapse
|
2
|
Abstract
Microsporidia are pathogenic organism related to fungi. They cause infections in a wide variety of mammals as well as in avian, amphibian, and reptilian hosts. Many microsporidia species play an important role in the development of serious diseases that have significant implications in human and veterinary medicine. While microsporidia were originally considered to be opportunistic pathogens in humans, it is now understood that infections also occur in immune competent humans. Encephalitozoon cuniculi, Encephalitozoon intestinalis, and Enterocytozoon bieneusi are primarily mammalian pathogens. However, many other species of microsporidia that have some other primary host that is not a mammal have been reported to cause sporadic mammalian infections. Experimental models and observations in natural infections have demonstrated that microsporidia can cause a latent infection in mammalian hosts. This chapter reviews the published studies on mammalian microsporidiosis and the data on chronic infections due to these enigmatic pathogens.
Collapse
Affiliation(s)
- Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Lee H, Lee SH, Lee YR, Kim HY, Moon BY, Han JE, Rhee MH, Kwon OD, Kwak D. Enterocytozoon bieneusi Genotypes and Infections in the Horses in Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2021; 59:639-643. [PMID: 34974671 PMCID: PMC8721311 DOI: 10.3347/kjp.2021.59.6.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022]
Abstract
Enterocytozoon bieneusi is a microsporidian pathogen. Recently, the equestrian population is increasing in Korea. The horse-related zoonotic pathogens, including E. bieneusi, are concerns of public health. A total of 1,200 horse fecal samples were collected from riding centers and breeding farms in Jeju Island and inland areas. Of the fecal samples 15 (1.3%) were PCR positive for E. bieneusi. Interestingly, all positive samples came from Jeju Island. Diarrhea and infection in foals were related. Two genotypes (horse1, horse2) were identified as possible zoonotic groups requiring continuous monitoring.
Collapse
Affiliation(s)
- Haeseung Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
| | - Seung-Hun Lee
- College of Veterinary Medicine, Chungbuk National University, Chungbuk 28644,
Korea
| | - Yu-Ran Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gyeongbuk 39660,
Korea
| | - Ha-Young Kim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gyeongbuk 39660,
Korea
| | - Bo-Youn Moon
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gyeongbuk 39660,
Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944,
Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944,
Korea
| | - Oh-Deog Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
| | - Dongmi Kwak
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566,
Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944,
Korea
- Corresponding author ()
| |
Collapse
|
4
|
Kwon JY, Seo JY, Kim TY, Lee HI, Ju JW. First Identification and Genotyping of Enterocytozoon bieneusi and Prevalence of Encephalitozoon intestinalis in Patients with Acute Diarrhea in the Republic of Korea. Pathogens 2021; 10:pathogens10111424. [PMID: 34832580 PMCID: PMC8622466 DOI: 10.3390/pathogens10111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
Encephalitozoon intestinalis and Enterocytozoon bieneusi can cause diarrhea in humans, especially severe diarrhea in immunocompromised patients. However, there have been few studies on Enc. intestinalis and Ent. bieneusi in patients with acute diarrhea in the Republic of Korea (ROK). In this study, fecal samples were collected from 1241 patients with acute diarrhea in 2020. Among these, 24 cases of Enc. intestinalis and one case of Ent. bieneusi were detected via PCR amplification of small subunit ribosomal RNA. Genotyping of the internal transcribed spacer region sequence revealed that the detected Ent. bieneusi genotype was in Group 1. This study provides the first evidence that Ent. bieneusi exists in humans in addition to animals in the ROK. To identify the causative agent, continuous monitoring of Enc. intestinalis and Ent. bieneusi is necessary for patients with acute diarrhea in the ROK.
Collapse
|
5
|
Lee H, Seo MG, Lee SH, Oem JK, Kim SH, Jeong H, Kim Y, Jheong WH, Kwon OD, Kwak D. Distribution and genotypic analysis of Enterocytozoon bieneusi from wild boars in Korea. Med Mycol 2021; 59:934-938. [PMID: 33998652 DOI: 10.1093/mmy/myab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Enterocytozoon bieneusi, an important microsporidian fungus, causes chronic diarrhea in humans and animals worldwide. Of the 502 fecal samples from wild boars, 13 were positive for the E. bieneusi internal transcribed spacer region, with a prevalence of 2.6%. Six E. bieneusi genotypes, D, EbpC, and four novel KWB1-KWB4, were identified with zoonotic potential. Genotypes D (subgroup 1a) and EbpC (subgroup 1d) were first reported in Korean swine and Korea, respectively; KWB1-KWB4 (subgroup 1e) were most prevalent in this study. Because zoonotic genotypes have been identified, E. bieneusi transmission through wild boars must be closely monitored for proper prevention and treatment, despite their low prevalence.
Collapse
Affiliation(s)
- Haeseung Lee
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - Min-Goo Seo
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon, Gyeongbuk 39660, Korea
| | - Seung-Hun Lee
- College of Veterinary Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Korea
| | - Jae-Ku Oem
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk 54596, Korea
| | - Seon-Hee Kim
- Environmental Health Research Department, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Korea
| | - Hyesung Jeong
- Environmental Health Research Department, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Korea
| | - Yongkwan Kim
- Environmental Health Research Department, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Korea
| | - Weon-Hwa Jheong
- Environmental Health Research Department, National Institute of Environmental Research, 42 Hwangyeong-ro, Seo-gu, Incheon 22689, Korea
| | - Oh-Deog Kwon
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - Dongmi Kwak
- College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| |
Collapse
|
6
|
FIRST REPORT OF ENTEROCYTOZOON BIENEUSI FROM AN AFRICAN LION ( PANTHERA LEO) IN A ZOO IN THE REPUBLIC OF KOREA. J Zoo Wildl Med 2021; 52:337-342. [PMID: 33827196 DOI: 10.1638/2020-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2020] [Indexed: 11/21/2022] Open
Abstract
Enterocytozoon bieneusi is the most common species of microsporidia that infects humans and animals worldwide. However, no information is available on E. bieneusi infection among zoo animals in the Republic of Korea (ROK). Here, we investigated the prevalence of E. bieneusi among animals kept in zoos and the zoonotic potential of the E. bieneusi identified. E. bieneusi was detected only in one African lion (Panthera leo) with diarrhea, using PCR and sequencing analysis of the internal transcribed spacer (ITS) of the rRNA gene. A phylogenetic analysis based on the ITS gene showed that the lion isolate was classified into a novel genotype KPL belonging to Group 2. The KPL genotype identified in this study differed from genotype I in 6 nucleotides and from genotype I-like in 3 nucleotides, respectively, indicating that Group 2 has the capacity to infect a wide range of hosts. This is the first report of the presence of E. bieneusi in an African lion housed in a zoo in the ROK. Further investigation is necessary to study E. bieneusi infection among zoo animals in various regions and to determine the transmission route, in order to control E. bieneusi infection.
Collapse
|
7
|
Ecological and public health significance of Enterocytozoon bieneusi. One Health 2020; 12:100209. [PMID: 33426263 PMCID: PMC7779778 DOI: 10.1016/j.onehlt.2020.100209] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Enterocytozoon bieneusi, a fungus-like protist parasite, causes symptomatic and asymptomatic intestinal infections in terrestrial animals and is also abundant in the environment. This parasite has been isolated from a variety of host types including humans, livestock, companion animals, birds, and wildlife, as well as the natural and urban environments including drinking source water, coastal water, recreational water, wastewater, vegetables in retail markets, and raw milk on farms. E. bieneusi exhibits high genetic diversity among host species and environmental sources and at least 500 genotypes have been identified thus far. Since its discovery in AIDS patients in 1985, scientists across the world have worked to demonstrate the natural history and public health potential of this pathogen. Here we review molecular typing studies on E. bieneusi and summarize relevant data to identify the potential sources of human and nonhuman infections and environmental contamination. This review also discusses the possible transmission routes of E. bieneusi and the associated risk factors, and advocates the importance of the One Health approach to tackle E. bieneusi infections.
Collapse
|
8
|
Li W, Feng Y, Xiao L. Diagnosis and molecular typing of Enterocytozoon bieneusi: the significant role of domestic animals in transmission of human microsporidiosis. Res Vet Sci 2020; 133:251-261. [PMID: 33035931 DOI: 10.1016/j.rvsc.2020.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Enterocytozoon bieneusi is an obligate intracellular fungus-like parasite with high genetic diversity among mammalian and avian hosts. Based on polymorphism analysis of the ribosomal internal transcribed spacer (ITS), nearly 500 genotypes were identified within E. bieneusi. Those genotypes form several genetic groups that exhibit phenotypic differences in host specificity and zoonotic potential and probably have varying public health implications. Some of the genotypes in Group 1 (e.g., D, EbpC, and Type IV) and Group 2 (e.g., BEB4, BEB6, I, and J) are the most common ones that infect a variety of hosts including humans and thus are of public health importance. By contrast, those genotypes in other genetic groups (Groups 3-11) are mostly restricted to the hosts from which they were originally isolated, which would have unknown or limited impacts on public health. Advances on diagnosis and molecular typing of E. bieneusi are introduced in this review. Genotype distribution pattern of E. bieneusi in major domestic animal groups (pigs, cattle, sheep, goats, cats, and dogs), the role of those animals in zoonotic transmission of microsporidiosis, and food and water as potential vehicles for transmission are interpreted here as well. This review highlights the importance of including more genetic or epidemiological data obtained in the same geographical areas and using more reliable genetic markers to analyze the actual extent of host specificity in E. bieneusi, for the purpose of fully appreciating zoonotic risks of those domestic animals in close contacts with men and enhancing our understanding of the modes of transmission.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Chen L, Gao X, Li R, Zhang L, Huang R, Wang L, Song Y, Xing Z, Liu T, Nie X, Nie F, Hua S, Zhang Z, Wang F, Ma RZ, Zhang L. Complete genome of a unicellular parasite ( Antonospora locustae) and transcriptional interactions with its host locust. Microb Genom 2020; 6:mgen000421. [PMID: 32783805 PMCID: PMC7643970 DOI: 10.1099/mgen.0.000421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 11/18/2022] Open
Abstract
Microsporidia are a large group of unicellular parasites that infect insects and mammals. The simpler life cycle of microsporidia in insects provides a model system for understanding their evolution and molecular interactions with their hosts. However, no complete genome is available for insect-parasitic microsporidian species. The complete genome of Antonospora locustae, a microsporidian parasite that obligately infects insects, is reported here. The genome size of A. locustae is 3 170 203 nucleotides, composed of 17 chromosomes onto which a total of 1857 annotated genes have been mapped and detailed. A unique feature of the A. locustae genome is the presence of an ultra-low GC region of approximately 25 kb on 16 of the 17 chromosomes, in which the average GC content is only 20 %. Transcription profiling indicated that the ultra-low GC region of the parasite could be associated with differential regulation of host defences in the fat body to promote the parasite's survival and propagation. Phylogenetic gene analysis showed that A. locustae, and the microsporidian family in general, is likely at an evolutionarily transitional position between prokaryotes and eukaryotes, and that it evolved independently. Transcriptomic analysis showed that A. locustae can systematically inhibit the locust phenoloxidase PPO, TCA and glyoxylate cycles, and PPAR pathways to escape melanization, and can activate host energy transfer pathways to support its reproduction in the fat body, which is an insect energy-producing organ. Our study provides a platform and model for studies of the molecular mechanisms of microsporidium-host interactions in an energy-producing organ and for understanding the evolution of microsporidia.
Collapse
Affiliation(s)
- Longxin Chen
- Key Laboratory for Biological Control, The Ministry of Agriculture of China, China Agricultural University, Beijing 100193, PR China
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, PR China
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xingke Gao
- Key Laboratory for Biological Control, The Ministry of Agriculture of China, China Agricultural University, Beijing 100193, PR China
| | - Runting Li
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, PR China
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Limeng Zhang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, PR China
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, PR China
| | - Rui Huang
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- School of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Linqing Wang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, PR China
| | - Yue Song
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, PR China
| | - Zhenzhen Xing
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, PR China
| | - Ting Liu
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, PR China
| | - Xiaoning Nie
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, PR China
| | - Fangyuan Nie
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- School of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Hua
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, PR China
| | - Zihan Zhang
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, PR China
| | - Feng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Runlin Z. Ma
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou 450044, PR China
- State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
- School of Life Sciences, The University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Long Zhang
- Key Laboratory for Biological Control, The Ministry of Agriculture of China, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
10
|
Dashti A, Rivero-Juarez A, Santín M, López-López P, Caballero-Gómez J, Frías-Casas M, Köster PC, Bailo B, Calero-Bernal R, Briz V, Carmena D. Enterocytozoon bieneusi (Microsporidia): Identification of novel genotypes and evidence of transmission between sympatric wild boars (Sus scrofa ferus) and Iberian pigs (Sus scrofa domesticus) in Southern Spain. Transbound Emerg Dis 2020; 67:2869-2880. [PMID: 32500974 DOI: 10.1111/tbed.13658] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 01/27/2023]
Abstract
Microsporidia is a phylum of obligate emergent intracellular protist-like fungi pathogens that infect a broad range of hosts including vertebrates and invertebrates. Enterocytozoon bieneusi is the most common cause of microsporidiosis in humans, affecting primarily immunosuppressed patients but also reported in immunocompetent individuals. Epidemiological information on the presence and molecular diversity of E. bieneusi in livestock and wildlife in Spain is limited. Therefore, the occurrence of this microsporidia was investigated in sympatric extensively reared Iberian pigs (n = 186) and free ranging wild boars (n = 142) in the province of Córdoba, Southern Spain. Forty-two Iberian pigs (22.6%) and three wild boars (2.1%) were found E. bieneusi positive by PCR. In Iberian pigs, occurrence of E. bieneusi was significantly higher in sows than in fattening pigs (31.6% vs. 11.4%; p = .001). Five genotypes were identified in Iberian pigs, four previously reported (EbpA, PigEb4, O, Pig HN-II) and a novel genotype (named PigSpEb1), while only two genotypes were identified in wild boars, EbpA and novel genotype PigSpEb1. All five genotypes identified belong to Group 1 suggesting zoonotic potential. This study constitutes the first report on the occurrence and molecular characterization of E. bieneusi in Iberian pigs and wild boars. The identification of two genotypes with zoonotic potential in sympatric Iberian pigs and wild boars suggests that E. bieneusi can be potentially transmitted between those two hosts, but also implies that they may act as natural sources of microsporidia infection to other hosts including humans.
Collapse
Affiliation(s)
- Alejandro Dashti
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - Antonio Rivero-Juarez
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
| | - Mónica Santín
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Pedro López-López
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
| | - Javier Caballero-Gómez
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
| | - Mario Frías-Casas
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain
| | - Pamela C Köster
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| | - Rafael Calero-Bernal
- SALUVET, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Verónica Briz
- Viral Hepatitis Reference and Research Laboratory, National Centre for Microbiology, Majadahonda, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Madrid, Spain
| |
Collapse
|
11
|
Ruviniyia K, Abdullah DA, Sumita S, Lim YAL, Ooi PT, Sharma RSK. Molecular detection of porcine Enterocytozoon bieneusi infection in Peninsular Malaysia and epidemiological risk factors associated with potentially zoonotic genotypes. Parasitol Res 2020; 119:1663-1674. [PMID: 32219552 DOI: 10.1007/s00436-020-06648-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
Abstract
Enterocytozoon bieneusi is an emerging opportunistic pathogen infecting humans, and both domestic and wild pigs are known to harbour zoonotic genotypes. There remains a paucity of information on the prevalence and epidemiology of this enteropathogen in Southeast Asia. The present study was undertaken to determine the molecular prevalence and risk factors associated with E. bieneusi infection among commercially farmed pigs in Malaysia. Faecal samples were collected from 450 pigs from 15 different farms and subjected to nested PCR amplification of the ribosomal internal transcribed spacer (ITS) gene of E. bieneusi. Phylogenetic analysis involved 28 nucleotide sequences of the ITS region of E. bieneusi. An interviewer-administered questionnaire provided information on the animal hosts, farm management systems and environmental factors and was statistically analysed to determine the risk factors for infection. The prevalence of E. bieneusi infection was relatively high (40.7%). The highest prevalence (51.3%) was recorded among the piglets, while the adults showed the lowest level of infection (31.3%). Multivariate analysis indicated that age of the pigs, distance of the farm from human settlement and farm management system were significant risk factors of infection. Three genotypes (EbpA, EbpC and Henan-III) detected among the pigs are potentially zoonotic. The high prevalence of E. bieneusi among locally reared pigs, the presence of zoonotic genotypes and the spatial distribution of pig farms and human settlements warrant further investigation on the possibility of zoonotic transmission.
Collapse
Affiliation(s)
- K Ruviniyia
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - D A Abdullah
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Department of Animal Production Techniques, Northern Technical University, Mosul, Iraq
| | - S Sumita
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Y A L Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - P T Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - R S K Sharma
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
12
|
Thathaisong U, Siripattanapipong S, Leelayoova S, Mungthin M. Prevalence and Molecular Characterization of Enterocytozoon bieneusi among Pigs in Chonburi Province, Eastern Thailand. Am J Trop Med Hyg 2020; 101:1392-1396. [PMID: 31549621 DOI: 10.4269/ajtmh.19-0569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Enterocytozoon bieneusi is an organism that infects a wide variety of vertebrates, including humans. Pigs also harbor E. bieneusi, of which several genotypes have been recently detected in human feces. The aim of this study was to determine the prevalence of E. bieneusi infection among pigs raised in three smallholder farms and eight small large-scale farms in Chonburi Province, Eastern Thailand, using nested polymerase chain reaction of the internal transcribed spacer (ITS) of the small subunit of ribosomal RNA gene and to investigate genotypes of E. bieneusi isolates using nucleotide sequencing and phylogenetic tree analysis of the ITS region. Of 244 stool samples, E. bieneusi was detected in 14.8% (36/244). Two known zoonotic genotypes, that is, genotypes E (77.8%) and F (22.2%), were identified. Using phylogenetic tree analysis, these two genotypes were clustered in human pathogenic and zoonotic potential groups, designated as group 1. The high prevalence of zoonotic genotypes of E. bieneusi among pigs suggests that pig farming is one of the potential sources of human infection. This is the first report of E. bieneusi genotypes among pigs raised in pig farms in Eastern Thailand.
Collapse
Affiliation(s)
- Umaporn Thathaisong
- Department of Microbiology, Faculty of Science, Burapha University, Chonburi, Thailand
| | | | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| |
Collapse
|
13
|
Zhou HH, Zheng XL, Ma TM, Qi M, Zhou JG, Liu HJ, Lu G, Zhao W. Molecular detection of Enterocytozoon bieneusi in farm-raised pigs in Hainan Province, China: infection rates, genotype distributions, and zoonotic potential. ACTA ACUST UNITED AC 2020; 27:12. [PMID: 32129760 PMCID: PMC7055476 DOI: 10.1051/parasite/2020009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/19/2020] [Indexed: 11/14/2022]
Abstract
Enterocytozoon bieneusi is a zoonotic fungal pathogen with a high degree of host diversity that can parasitize many animals, including humans. Pigs may play an important role in the epidemiology of E. bieneusi as reservoir hosts. Nevertheless, the genotypes of E. bieneusi in pigs in China remain poorly understood. The aim of this study was to determine the prevalence of E. bieneusi infection amongst pigs raised on farms from four cities of Hainan Province, using nested polymerase chain reaction (PCR) of the partial small subunit of the ribosomal RNA gene, and to identify genotypes of E. bieneusi isolates based on sequence analysis of the ribosomal internal transcribed spacer (ITS) region. Among 188 stool samples, E. bieneusi was detected in 46.8% (88/188). Eight genotypes including four known (EbpA, CS-4, MJ14, and CHG19) and four novel (HNP-I – HNP-IV) genotypes were identified. Using phylogenetic analysis, genotypes EbpA, CS4, CHG19, HNP-III, and HNP-IV were clustered into zoonotic Group 1, while the remaining three genotypes (MJ14, HNP-I, and HNP-II) clustered into Group 10. The high prevalence of zoonotic genotypes of E. bieneusi among pigs suggests that pig farming is a potential source of human infection. Additionally, this is the first identification of genotypes in Group 10 in pigs indicating unique epidemic features of E. bieneusi in pigs in Hainan Province, the southernmost part of China.
Collapse
Affiliation(s)
- Huan-Huan Zhou
- Department of Pathogenic Biology, Hainan Medical University, Haikou, 571199 Hainan, PR China - Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199 Hainan, PR China - Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Medical University, 571199 Haikou, PR China
| | - Xin-Li Zheng
- College of Animal Sciences, Tarim University, Alar, 843300 Xinjiang, PR China
| | - Tian-Ming Ma
- Department of Pathogenic Biology, Hainan Medical University, Haikou, 571199 Hainan, PR China - Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199 Hainan, PR China - Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Medical University, 571199 Haikou, PR China
| | - Meng Qi
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, 571100 Haikou, PR China
| | - Jing-Guo Zhou
- Department of Pathogenic Biology, Hainan Medical University, Haikou, 571199 Hainan, PR China - Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199 Hainan, PR China - Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Medical University, 571199 Haikou, PR China
| | - Hai-Ju Liu
- Department of Pathogenic Biology, Hainan Medical University, Haikou, 571199 Hainan, PR China - Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199 Hainan, PR China - Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Medical University, 571199 Haikou, PR China
| | - Gang Lu
- Department of Pathogenic Biology, Hainan Medical University, Haikou, 571199 Hainan, PR China - Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199 Hainan, PR China - Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Medical University, 571199 Haikou, PR China
| | - Wei Zhao
- Department of Pathogenic Biology, Hainan Medical University, Haikou, 571199 Hainan, PR China - Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, 571199 Hainan, PR China - Key Laboratory of Tropical Translational Medicine of the Ministry of Education, Hainan Medical University, 571199 Haikou, PR China - Department of Parasitology, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, PR China
| |
Collapse
|
14
|
Zhang N, Wu R, Ji T, Cui LL, Cao HX, Li D, Li J, Zhang L, Huang C, Zhou DH. Molecular Detection, Multilocus Genotyping, and Population Genetics of Enterocytozoon bieneusi in Pigs in Southeastern China. J Eukaryot Microbiol 2019; 67:107-114. [PMID: 31486160 DOI: 10.1111/jeu.12759] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 11/29/2022]
Abstract
Enterocytozoon bieneusi is an important opportunistic pathogen widely distributed in humans and animals that causes diarrhea or fatal diarrhea in immunocompromised hosts. To examine the infection status and molecular characteristics of E. bieneusi in pigs, 725 fecal samples were collected from pigs in six areas of Fujian Province. The E. bieneusi genotypes were identified based on the internal transcribed spacer (ITS) regions of the ribosomal RNA (rRNA) gene by nested PCR, and its population genetics were analyzed by multilocus sequence typing (MLST). The results showed that the infection rate of E. bieneusi was 24.4% (177/725), and 11 known genotypes (EbpC, EbpA, CHN-RR2, KIN-1, CHG7, CHS5, CM11, CHG23, G, PigEBITS, and D) and 2 novel genotypes (FJF and FJS) were identified. All the genotypes were found to be clustered into zoonotic Group 1. Moreover, 52 positive samples were successfully amplified at minisatellite and microsatellite loci and formed 48 distinct multilocus genotypes (MLGs). Further population structure analyses showed strong genetic linkage disequilibrium (LD) and several recombination events (Rm), indicating that E. bieneusi has a clonal population structure. This study is the first to investigate the prevalence and molecular characteristics of E. bieneusi in Fujian Province and could provide baseline data to control E. bieneusi infection in pigs and humans and deepen our understanding of the zoonotic risk of E. bieneusi and its distribution in China.
Collapse
Affiliation(s)
- Ning Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Ran Wu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ting Ji
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin-Lin Cui
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hao-Xuan Cao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junqiang Li
- Scientific Research Experiment Center & Laboratory Animal Center, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology, College of Life Sciences, Longyan University, Longyan, 364012, China
| | - Dong-Hui Zhou
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
15
|
Zhao A, Li D, Wei Z, Zhang Y, Peng Y, Zhu Y, Qi M, Zhang L. Molecular Detection and Genotyping of Enterocytozoon bieneusi in Racehorses in China. Front Microbiol 2019; 10:1920. [PMID: 31474973 PMCID: PMC6706775 DOI: 10.3389/fmicb.2019.01920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
Enterocytozoon bieneusi is a widely distributed human and animal pathogen. However, few data are available on the distribution of E. bieneusi genotypes in racehorses. In this study, 621 fecal specimens were collected from racehorses at 17 equestrian clubs in 15 Chinese cities. E. bieneusi was detected via nested polymerase chain reaction (PCR) amplification of the internal transcribed spacer (ITS) gene. The overall infection rate of E. bieneusi was 4.8% (30/621). Statistically significant differences were found in the prevalence of this parasite among the equestrian clubs (χ2 = 78.464, df = 16, p < 0.01) and age groups (χ2 = 23.686, df = 1, p < 0.01), but no sex bias was found among the racehorses for the E. bieneusi infections (χ2 = 1.407, df = 2, p > 0.05). Ten E. bieneusi genotypes were identified, including seven known genotypes (EbpC, EbpA, Peru6, horse1, horse2, CAF1, and TypeIV) and three novel genotypes (HBH-1, SXH-1, and BJH-1). Phylogenetic analysis showed that EbpC, EbpA, Peru6, horse2, CAF1, TypeIV, BJH-1, and SXH-1 belonged to Group 1 of E. bieneusi, HBH-1 belonged to Group 2, and horse2 belonged to Group 6. Our findings advance the current knowledge of E. bieneusi prevalence and genotypes in racehorses in China.
Collapse
Affiliation(s)
- Aiyun Zhao
- College of Animal Science, Tarim University, Alar, China
| | - Dongfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zilin Wei
- College of Animal Science, Tarim University, Alar, China
| | - Ying Zhang
- College of Animal Science, Tarim University, Alar, China
| | | | - Yixuan Zhu
- College of Animal Science, Tarim University, Alar, China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
16
|
Amer S, Kim S, Han JI, Na KJ. Prevalence and genotypes of Enterocytozoon bieneusi in wildlife in Korea: a public health concern. Parasit Vectors 2019; 12:160. [PMID: 30961667 PMCID: PMC6454782 DOI: 10.1186/s13071-019-3427-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/02/2019] [Indexed: 11/16/2022] Open
Abstract
Background Enterocytozoon bieneusi is a unicellular microsporidian fungal pathogen that infects a broad range of animal hosts, including wild and domestic animals and humans. The infection burden of this parasite in wild animals in Korea is largely unknown. In this study, the occurrence and genotypes of E. bieneusi were investigated in wild animal populations in Korea. Methods A total of 157 fecal samples (97 from Korean water deer, 48 from raccoon dogs and 12 from other taxa) were collected from wild animals at five wildlife centers in Korea. Genomic DNA was extracted from the samples and screened by nested-PCR targeting the internal transcribed spacer (ITS) region of rRNA, followed by sequence analysis to determine the genotype(s) of E. bieneusi. Results The overall prevalence of E. bieneusi was 45.2% (71/157), with rates of 53.6% (52/97) in Korean water deer, 35.4% (17/48) in raccoon dogs and 16.7% (2/12) in other taxa. We detected seven ITS genotypes, including one known (genotype D) and six new genotypes (Korea-WL1–Korea-WL6). Phylogenetically, all detected genotypes clustered with counterparts belonging to group 1, which includes isolates from different animal hosts and humans, suggesting their zoonotic potential. Conclusions Our survey results indicate that E. bieneusi circulates widely in wild animals in Korea. These findings address the role of wildlife as a potential source of microsporidiosis in domestic animals and humans.
Collapse
Affiliation(s)
- Said Amer
- Laboratory of Veterinary Laboratory Medicine and Wildlife Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.,Department of Zoology, Faculty of Science, Kafr El Sheikh University, Kafr El Sheikh, 33516, Egypt
| | - Sungryong Kim
- Laboratory of Veterinary Laboratory Medicine and Wildlife Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jae-Ik Han
- Laboratory of Wildlife Medicine/Diseases, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea
| | - Ki-Jeong Na
- Laboratory of Veterinary Laboratory Medicine and Wildlife Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea. .,The Wildlife Center of Chungbuk, Cheongju, Chungbuk, 28116, Republic of Korea.
| |
Collapse
|
17
|
Li D, Zheng S, Zhou C, Karim MR, Wang L, Wang H, Yu F, Li J, Wang W, Wang Y, Zhang S, Jian F, Wang R, Ning C, Zhang L. Multilocus Typing of Enterocytozoon bieneusi in Pig Reveals the High Prevalence, Zoonotic Potential, Host Adaptation and Geographical Segregation in China. J Eukaryot Microbiol 2019; 66:707-718. [PMID: 30723969 DOI: 10.1111/jeu.12715] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023]
Abstract
Enterocytozoon bieneusi is one of the most frequently diagnosed Microsporidia of humans and most animals. However, there is no information on E. bieneusi infection of pigs in Tibet and Henan, China. In this study, 1,190 fecal samples were collected from pigs in Tibet and Henan and screened for the presence of E. bieneusi. The overall prevalence of E. bieneusi infection was 54.2% (645/1,190), with differences in prevalence observed among geographical areas, ages, and pig breeds. Moreover, 10 E. bieneusi genotypes were identified based on internal transcribed spacer region genotyping, including eight known genotypes (EbpC, EbpA, CHG19, CHC5, Henan-III, I, D, and H) and two novel genotypes (XZP-I and XZP-II). Multilocus sequence typing revealed 18, 7, 17, and 13 genotypes at minisatellite/microsatellite loci MS1, MS3, MS4, and MS7, respectively. Strong linkage disequilibrium (LD) and few numbers of recombination events, suggest a clonal structure of the E. bieneusi population examined in this study. The low pairwise genetic distance (FST ) and gene flow (Nm) values indicated limited gene flow in the E. bieneusi population from different hosts, with phylogenetic, structure, and median-joining network analyses all indicating the existence of host and geographical isolation. The identification of isolates belonging to nine human-pathogenic genotypes indicates that pigs play an important role in the dissemination of E. bieneusi, improving our present understanding of E. bieneusi epidemiology in the studied region.
Collapse
Affiliation(s)
- Dongfang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Shuangjian Zheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Chunxiang Zhou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Md Robiul Karim
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Department of Medicine, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Luyang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Haiyan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,Experimental Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Fuchang Yu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Weiyi Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Yange Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Sumei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Fuchun Jian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450002, China
| |
Collapse
|
18
|
Lee SH, Oem JK, Lee SM, Son K, Jo SD, Kwak D. Molecular detection of Enterocytozoon bieneusi from bats in South Korea. Med Mycol 2019; 56:1033-1037. [PMID: 29228260 DOI: 10.1093/mmy/myx136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/02/2017] [Indexed: 11/14/2022] Open
Abstract
Enterocytozoon bieneusi, which has recently been re-classified as a fungus, was identified in 5.2% (3/58) bat intestinal tissues and 1.9% (4/210) bat feces collected in South Korea. The positive cases were classified into six genotypes including four novel genotypes, KBAT1-KBAT4, based on sequence analysis of the E. bieneusi internal transcribed spacer (ITS) region. In addition, a novel genotype, KBAT3, belonged to group 1, which is considered having zoonotic potential by phylogenetic analysis of the E. bieneusi ITS region. This study expands our knowledge of the host range of E. bieneusi.
Collapse
Affiliation(s)
- Seung-Hun Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Jae-Ku Oem
- College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Sae-Mi Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Kidong Son
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Seong-Deok Jo
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, South Korea
| | - Dongmi Kwak
- College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea.,Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
19
|
Wang SS, Li JQ, Li YH, Wang XW, Fan XC, Liu X, Li ZJ, Song JK, Zhang LX, Zhao GH. Novel genotypes and multilocus genotypes of Enterocytozoon bieneusi in pigs in northwestern China: A public health concern. INFECTION GENETICS AND EVOLUTION 2018; 63:89-94. [DOI: 10.1016/j.meegid.2018.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/02/2018] [Accepted: 05/18/2018] [Indexed: 11/17/2022]
|
20
|
Wang H, Zhang Y, Wu Y, Li J, Qi M, Li T, Wang J, Wang R, Zhang S, Jian F, Ning C, Zhang L. Occurrence, Molecular Characterization, and Assessment of Zoonotic Risk of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Pigs in Henan, Central China. J Eukaryot Microbiol 2018; 65:893-901. [PMID: 29752883 DOI: 10.1111/jeu.12634] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023]
Abstract
Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are common gastrointestinal pathogens in humans and animals. Little is known about them and the range of species/assemblages/genotypes occurring in domestic pigs in China. Here, we present data on the occurrence and molecular diversity of these pathogens detected in the feces from farms in Henan, central China. Of 897 fecal samples tested, 28 (3.1%), 15 (1.7%), and 408 (45.5%) samples were positive for Cryptosporidium, G. duodenalis, and E. bieneusi, respectively. Cryptosporidium and G. duodenalis were most frequently detected in piglets, while E. bieneusi was markedly more prevalent in fattening pigs. Sequence analysis of SSU rRNA gene revealed that positive Cryptosporidium strains belonged to C. suis (n = 18) and C. scrofarum (n = 10). Giardia duodenalis assemblages E (n = 9), assemblages A (n = 3), and assemblages C (n = 3) were characterized based on the sequence analysis of tpi gene. Thirteen E. bieneusi genotypes comprising four novel (pigHN-I to pigHN-IV) and nine known (EbpC, EbpA, pigEbITS5, LW1, H, CM8, G, CHG19, and CHS5) genotypes were identified by ITS sequence analysis of a large proportion (n = 200) of E. bieneusi-positive samples. EbpC was the most frequent genotype, detected in 60 specimens. All 13 genotypes identified in this study clustered in zoonotic Group 1. The findings indicate that the presence of zoonotic species/assemblages/genotypes of these pathogens poses a threat to public health, suggesting that pigs in Henan province could be a significant source of human infection and water pollution.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yiqi Zhang
- Zhengzhou Foreign Language School, Zhengzhou, 450001, Henan, China
| | - Yayun Wu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Meng Qi
- College of Animal Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Tingwen Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Jianling Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Sumei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Fuchun Jian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| |
Collapse
|
21
|
Heyworth MF. Genetic aspects and environmental sources of microsporidia that infect the human gastrointestinal tract. Trans R Soc Trop Med Hyg 2018; 111:18-21. [PMID: 28339881 DOI: 10.1093/trstmh/trx001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/11/2017] [Indexed: 01/06/2023] Open
Abstract
Enterocytozoon bieneusi and Encephalitozoon intestinalis are microsporidia that infect the human gastrointestinal (GI) tract. Each of these microsporidia has been shown to infect various non-human hosts (mammalian and avian), raising the possibility of inter-species transmission, for example, from such hosts to human subjects via waterborne dispersal of microsporidian spores. During the past two decades, genome sequencing has delineated more than 90 genotypes of Ent. bieneusi, and has led to the conclusion that not all the genotypes of this organism infect human subjects. Well documented in the HIV-infected population, GI tract microsporidiosis is also known to occur in immunocompetent, HIV-negative, individuals. The prevalence of HIV-associated microsporidiosis diminished following the introduction of effective anti-retroviral therapy.
Collapse
Affiliation(s)
- Martin F Heyworth
- Research Service (151), Corporal Michael J. Crescenz Department of Veterans Affairs (VA) Medical Center, University and Woodland Avenues, Philadelphia, PA 19104, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Prasertbun R, Mori H, Pintong AR, Sanyanusin S, Popruk S, Komalamisra C, Changbunjong T, Buddhirongawatr R, Sukthana Y, Mahittikorn A. Zoonotic potential of Enterocytozoon genotypes in humans and pigs in Thailand. Vet Parasitol 2016; 233:73-79. [PMID: 28043391 DOI: 10.1016/j.vetpar.2016.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/16/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Enterocytozoon bieneusi is an opportunistic intestinal pathogen infecting humans and a variety of animals. Its mode of transmission and zoonotic potential are not completely understood. E. bieneusi has been frequently identified in pigs. The objective of our study was to investigate E. bieneusi in pigs and humans in Western and Central Thailand to determine its presence, genetic diversity, and zoonotic potential. A total of 277 human and 210 pig faecal samples were collected and analysed. E. bieneusi was found in 5.4% and 28.1% of human and pig samples, respectively, by nested PCR. Genotyping based on the internal transcribed spacer regions of the small subunit ribosomal RNA demonstrated three known genotypes (D, H, PigEb10) and eight novel genotypes (TMH1-8) in humans, and five known genotypes (D, EbpA, EbpC, H, O) and 11 novel genotypes (TMP1-11) in pigs. All known genotypes identified in humans and pigs had zoonotic potential. Further studies are needed to evaluate zoonotic risk of novel genotypes, as pigs may play an important role in the transmission of E. bieneusi.
Collapse
Affiliation(s)
- Rapeepun Prasertbun
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Hirotake Mori
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ai-Rada Pintong
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suparut Sanyanusin
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supaluk Popruk
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalit Komalamisra
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tanasak Changbunjong
- Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand; The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Ruangrat Buddhirongawatr
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand; Department of Clinical Sciences and Public Health Medicine, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Yaowalark Sukthana
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
23
|
Genetic variation of mini- and microsatellites and a clonal structure in Enterocytozoon bieneusi population in foxes and raccoon dogs and population differentiation of the parasite between fur animals and humans. Parasitol Res 2016; 115:2899-904. [PMID: 27095568 DOI: 10.1007/s00436-016-5069-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Enterocytozoon bieneusi is an obligate intracellular protozoan parasite that infects a wide range of mammal hosts and birds. Previous genotypic surveys were limited to measure the polymorphisms at the ribosomal internal transcribed spacer (ITS) that evolved slowly. Data on population structure are available only on E. bieneusi isolates from primates. This study explored the genotypic and phylogenetic characteristics of four mini- and microsatellites and performed a population genetic analysis in 39 E. bieneusi isolates of potentially zoonotic ITS genotype D from farmed foxes and raccoon dogs in China. Sequence polymorphisms facilitated determination of six, two, four, and five genotypes at markers MS1, MS3, MS4, and MS7, respectively. Patterns of phylogeny revealed different levels of diversity within and among the genetic markers. Clear genotypic and phylogenetic divergences between E. bieneusi isolates of ITS genotype D from fur animals and humans were observed at individual markers. Complete linkage disequilibrium and very limited recombination in subsequent population genetic analysis supported a clonal structure for E. bieneusi population from fur animals (FID). Phylogenetic analysis, genetic network, and measures of F ST and gene flow demonstrated population differentiation of FID from two known human E. bieneusi populations HID (with a clonal structure) and HIA (with an epidemic structure). The data indicated an ideal resolving power of MLST compared to the previously widely used ITS genotyping and confirmed the clonal nature and population differentiation of E. bieneusi in various hosts.
Collapse
|
24
|
Stentiford GD, Becnel JJ, Weiss LM, Keeling PJ, Didier ES, Williams BAP, Bjornson S, Kent ML, Freeman MA, Brown MJF, Troemel ER, Roesel K, Sokolova Y, Snowden KF, Solter L. Microsporidia - Emergent Pathogens in the Global Food Chain. Trends Parasitol 2016; 32:336-348. [PMID: 26796229 PMCID: PMC4818719 DOI: 10.1016/j.pt.2015.12.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
Intensification of food production has the potential to drive increased disease prevalence in food plants and animals. Microsporidia are diversely distributed, opportunistic, and density-dependent parasites infecting hosts from almost all known animal taxa. They are frequent in highly managed aquatic and terrestrial hosts, many of which are vulnerable to epizootics, and all of which are crucial for the stability of the animal-human food chain. Mass rearing and changes in global climate may exacerbate disease and more efficient transmission of parasites in stressed or immune-deficient hosts. Further, human microsporidiosis appears to be adventitious and primarily associated with an increasing community of immune-deficient individuals. Taken together, strong evidence exists for an increasing prevalence of microsporidiosis in animals and humans, and for sharing of pathogens across hosts and biomes.
Collapse
Affiliation(s)
- G D Stentiford
- Pathology and Molecular Systematics Team, Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - -J J Becnel
- United States Department of Agriculture (USDA) Agricultural Research Center (ARS), Center for Medical, Agricultural, and Veterinary Entomology (CMAVE), 1600 South West 23rd Drive, Gainesville, FL, 32608, USA
| | - L M Weiss
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 504, Bronx, NY 10641, USA
| | - P J Keeling
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, V6T 1Z4 Canada
| | - E S Didier
- Division of Microbiology, Tulane National Primate Research Center and Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA
| | - B-A P Williams
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter EX4 4QD, UK
| | - S Bjornson
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, Canada
| | - M-L Kent
- Departments of Microbiology and Biomedical Sciences, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA
| | - M A Freeman
- Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - M J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - E-R Troemel
- University of California, San Diego, 4202 Bonner Hall, 9500 Gilman Drive #0349, La Jolla, CA 92093-0349, USA
| | - K Roesel
- International Livestock Research Institute, c/o Freie Universität Berlin, Institute of Parasitology and Tropical Veterinary Medicine, Robert-von-Ostertag-Strasse 7-13, Berlin, 14163 Germany
| | - Y Sokolova
- Department of Comparative Biomedical Sciences, Louisiana State University, School of Veterinary Medicine, 1909 Skip Bertman Drive, Baton RougeLA 70803, USA
| | - K F Snowden
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Veterinary Pathobiology, Mailstop 4467, College Station, TX 77843-4467, USA
| | - L Solter
- Illinois Natural History Survey, Prairie Research Institute at the University of Illinois at Urbana-Champaign, 1816 South Oak Street, Champaign, IL 61820, USA.
| |
Collapse
|
25
|
Wan Q, Lin Y, Mao Y, Yang Y, Li Q, Zhang S, Jiang Y, Tao W, Li W. High Prevalence and Widespread Distribution of Zoonotic Enterocytozoon bieneusi Genotypes in Swine in Northeast China: Implications for Public Health. J Eukaryot Microbiol 2015; 63:162-70. [PMID: 26333563 DOI: 10.1111/jeu.12264] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/10/2015] [Accepted: 08/26/2015] [Indexed: 11/28/2022]
Abstract
This study analyzed 563 fecal specimens of asymptomatic pigs from five cities of northeast China for the prevalence and genetic characteristics of Enterocytozoon bieneusi. The parasite was detected in 267 of 563 (47.4%) pigs by nested PCR of the ribosomal internal transcribed spacer (ITS). The differences in prevalence between preweaned (58.0%, 94/162) and growing pigs (39.6%, 114/288) and between weaned (52.2%, 59/113) and growing pigs are significant (p < 0.05). Genotypic typing and phylogenetic analysis facilitated identification of six human-pathogenic genotypes EbpC, O, CS-4, EbpA, Henan-IV, and PigEBITS5 and six potentially zoonotic genotypes EbpB, CC-1, CS-1, CS-3, CHN7, and CS-10. Genotypes CS-4 (32/35) and EbpC (3/35) from Harbin and Henan-IV (5/64) from Qiqihar determined in pigs herein represented the main causative agents of human microsporidiosis in Harbin. The most dominant genotype EbpC found in pigs from Daqing (35/65) and Qiqihar (a close neighbor to Daqing) (47/64) contributed significantly to human infections in Daqing. Genotype EbpC was also a leading E. bieneusi pathogen in humans, drinking water, and wastewater in central China. This study provided robust evidence that pigs could be an outstanding source of human microsporidiosis and water contamination in China.
Collapse
Affiliation(s)
- Qiang Wan
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yongchao Lin
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yixian Mao
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yuqi Yang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Qiao Li
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Siwen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yanxue Jiang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wei Tao
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| |
Collapse
|
26
|
Yang Y, Lin Y, Li Q, Zhang S, Tao W, Wan Q, Jiang Y, Li W. Widespread presence of human-pathogenic Enterocytozoon bieneusi genotype D in farmed foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) in China: first identification and zoonotic concern. Parasitol Res 2015; 114:4341-8. [DOI: 10.1007/s00436-015-4714-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
27
|
First report of Enterocytozoon bieneusi in pigs in Brazil. Parasitol Int 2015; 64:18-23. [DOI: 10.1016/j.parint.2015.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/30/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022]
|
28
|
Kim K, Yoon S, Cheun HI, Kim JH, Sim S, Yu JR. Detection of Encephalitozoon spp. from human diarrheal stool and farm soil samples in Korea. J Korean Med Sci 2015; 30:227-32. [PMID: 25729242 PMCID: PMC4330474 DOI: 10.3346/jkms.2015.30.3.227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/26/2015] [Indexed: 11/30/2022] Open
Abstract
Microsporidia are eukaryotic organisms that cause zoonosis and are major opportunistic pathogens in HIV-positive patients. However, there is increasing evidence that these organisms can also cause gastrointestinal and ocular infections in immunocompetent individuals. In Korea, there have been no reports on human infections with microsporidia to date. In the present study, we used real-time PCR and nucleotide sequencing to detect Encephalitozoon intestinalis infection in seven of 139 human diarrheal stool specimens (5%) and Encephalitozoon hellem in three of 34 farm soil samples (8.8%). Genotype analysis of the E. hellem isolates based on the internal transcribed spacer 1 and polar tube protein genes showed that all isolates were genotype 1B. To our knowledge, this is the first report on human E. intestinalis infection in Korea and the first report revealing farm soil samples as a source of E. hellem infection. Because microsporidia are an important public health issue, further large-scale epidemiological studies are warranted.
Collapse
Affiliation(s)
- Kyungjin Kim
- Department of Environmental and Tropical Medicine & Research Institute of Medical Sciences, Konkuk University, School of Medicine, Seoul, Korea
| | - Sejoung Yoon
- Department of Environmental and Tropical Medicine & Research Institute of Medical Sciences, Konkuk University, School of Medicine, Seoul, Korea
| | - Hyeng-Il Cheun
- Division of Epidemic Inteligence Service, Korea Centers for Disease Control & Prevention, Cheongju, Korea
| | - Jae-Hwan Kim
- Department of Environmental and Tropical Medicine & Research Institute of Medical Sciences, Konkuk University, School of Medicine, Seoul, Korea
| | - Seobo Sim
- Department of Environmental and Tropical Medicine & Research Institute of Medical Sciences, Konkuk University, School of Medicine, Seoul, Korea
| | - Jae-Ran Yu
- Department of Environmental and Tropical Medicine & Research Institute of Medical Sciences, Konkuk University, School of Medicine, Seoul, Korea
| |
Collapse
|
29
|
High prevalence of Enterocytozoon bieneusi in asymptomatic pigs and assessment of zoonotic risk at the genotype level. Appl Environ Microbiol 2015; 80:3699-3707. [PMID: 24727270 DOI: 10.1128/aem.00807-14] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterocytozoon bieneusi is an emerging and clinically significant enteric parasite infecting humans and animals and can cause life-threatening diarrhea in immunocompromised people. Pigs are considered to be one of the main reservoir hosts of E. bieneusi based on their high prevalence rates and zoonotic genotypes in pigs. As an opportunistic pathogen, E. bieneusi infection of pigs can be inapparent, which leads to neglect in detecting this parasite in pigs and assessing the epidemiological role of pigs in the transmission of human microsporidiosis. In the present study, 95 healthy pigs aged 2 or 3 months were randomly selected from three areas in Heilongjiang Province, China. E. bieneusi isolates were identified and genotyped based on the small-subunit (SSU) rRNA and internal transcribed spacer (ITS) regions of the rRNA gene by PCR and sequencing. A high prevalence of E. bieneusi was observed, 83.2% (79/95) at the SSU rRNA locus versus 89.5% (85/95) at the ITS locus. Ten ITS genotypes were obtained, comprising six known genotypes—EbpA (n = 30), D (n = 19), H (n = 18), O (n = 11), CS-1 (n = 1), and LW1 (n = 1)—and four novel genotypes named HLJ-I to HLJ-IV; 70.6% (60/85) of E. bieneusi genotypes were zoonotic (genotypes EbpA, D, and O). The findings of a high prevalence of E. bieneusi in pigs and a large percentage of zoonotic genotypes indicate that pigs may play a role in the transmission of E. bieneusi to humans and may become an important source of water contamination in our investigated areas.
Collapse
|
30
|
Hu Y, Feng Y, Huang C, Xiao L. Occurrence, source, and human infection potential of Cryptosporidium and Enterocytozoon bieneusi in drinking source water in Shanghai, China, during a pig carcass disposal incident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14219-14227. [PMID: 25383482 PMCID: PMC5788171 DOI: 10.1021/es504464t] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In March 2013, thousands of domestic pig carcasses were found floating in the Huangpu River, a drinking source water in Shanghai, China. To investigate the impact of the pig carcass incident on microbial water quality, 178 river water samples were collected from the upper Huangpu River from March 2013 to March 2014. Samples were concentrated by calcium carbonate flocculation and examined for host-adapted Cryptosporidium and Enterocytozoon bieneusi by ploymerase chain reaction (PCR). Positive PCR products were sequenced to determine Cryptosporidium species and E. bieneusi genotypes. A total of 67 (37.6%) and 56 (31.5%) samples were PCR-positive for Cryptosporidium and E. bieneusi, respectively. The occurrence rates of Cryptosporidium and E. bieneusi in March 2013 (83.3%; 41.7%) and May 2013 (73.5%; 44.1%) were significantly higher than rates in later sampling times. Among the 13 Cryptosporidium species/genotypes identified, C. andersoni and C. suis were the most common species, being found in 38 and 27 samples, respectively. Seventeen E. bieneusi genotypes were found, belonging to 11 established genotypes (EbpC, EbpA, D, CS-8, PtEb IX, Peru 8, Peru 11, PigEBITS4, EbpB, G, O) and six new ones (RWSH1 to RWSH6), most of which belonged to pig-adapted Groups 1d and 1e. EbpC was the most common genotype, being found in 37 samples. The distribution of Cryptosporidium species and E. bieneusi genotypes suggest that dead pigs contributed significantly to Cryptosporidium and E. bieneusi contamination in the Huangpu River. Although most Cryptosporidium species found in river water were not major human pathogens, the majority of E. bieneusi genotypes detected were endemic in China. Data from this study should be useful in the development of strategies in addressing future contamination events in drinking water supplies.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chengchen Huang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, United States
| |
Collapse
|
31
|
Li W, Tao W, Jiang Y, Diao R, Yang J, Xiao L. Genotypic distribution and phylogenetic characterization of Enterocytozoon bieneusi in diarrheic chickens and pigs in multiple cities, China: potential zoonotic transmission. PLoS One 2014; 9:e108279. [PMID: 25255117 PMCID: PMC4177920 DOI: 10.1371/journal.pone.0108279] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022] Open
Abstract
This study investigated diarrheic broiler and layer chickens (<50 days; n = 14) and pigs of three age groups (preweaned <30 days, weaned ≈30 to 60 days, and growing >60 days; n = 64) for E. bieneusi genotypes in northeast China and evaluated the potential roles of chickens and pigs in zoonotic transmission of microsporidiosis. Two 45-day-old layer chickens in city Jixi, Heilongjiang province and one 23-day-old broiler chicken in city Songyuan, Jilin province were identified to harbor a human-pathogenic E. bieneusi genotype Henan-IV and a new genotype named CC-1, respectively, by nested PCR and sequence analysis of the ribosomal internal transcribed spacer (ITS). Eleven of 64 (17.2%) duodenal mucosal specimens from pigs in city Tianjin, city Tongliao of Inner Mongolia, cities Jilin and Songyuan of Jilin province, and cities Daqing, Harbin, and Suihua of Heilongjiang province, were positive for E. bieneusi, with the infection rates of weaned pigs (35%, 7/20) significantly higher than preweaned ones (3.6%, 1/28; P<0.05). Nucleotide sequences of the ITS were obtained from 6 pig specimens, belonging to 3 known genotypes CHN7, EbpC, and Henan-IV. That the previous reports have described the occurrence of genotypes EbpC and Henan-IV in humans and EbpC in wastewater in central China and the clustering of genotypes CC-1 and CHN7 into a major phylogenetic group of E. bieneusi genotypes with zoonotic potential indicated that chickens and pigs could be potential sources of human micorsporidiosis. To our knowledge, this is the first report describing the existence of zoonotic E. bieneusi genotypes in diarrheic chickens.
Collapse
Affiliation(s)
- Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- * E-mail: (WL); (LX)
| | - Wei Tao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanxue Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ruinan Diao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jinping Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail: (WL); (LX)
| |
Collapse
|
32
|
High diversity of human-pathogenic Enterocytozoon bieneusi genotypes in swine in northeast China. Parasitol Res 2014; 113:1147-53. [PMID: 24442159 DOI: 10.1007/s00436-014-3752-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
Abstract
Despite the advances in defining Enterocytozoon bieneusi genotypes worldwide, rare genotypic surveys have been documented on this ubiquitous pathogenic protozoan in mammals in China, especially the role of pigs in zoonotic transmission of microsporidiosis remains unclear. In this study, the distribution of E. bieneusi genotypes in 113 duodenal mucosal specimens of pigs with acute diarrhea from 15 cities in northeast China was determined by PCR and DNA sequence analysis of the ribosomal internal transcribed spacer. The organism was detected in 51 (45.1%) pigs from 12 cities, with infection rates of the nursery pigs (21/33, 63.6%) significantly higher than the preweaned (25/61, 41.0%; P < 0.05) and the growing (5/19, 26.3%; P < 0.01) ones. E. bieneusi belongs to nine known human-pathogenic genotypes (D, EbpA, EbpC, EbpD, H, Henan-I, Henan-III, Henan-IV, and O) and eight new genotypes (CS-1 to CS-8). Genotypes D, EbpA, EbpC, EbpD, Henan-I, Henan-III, and Henan-IV have been found in human infections and D, EbpA, EbpC, and EbpD in wastewater in central China. The new genotypes were genetically clustered into a group of existing E. bieneusi genotypes with zoonotic potential. Considering the discovery of a high prevalence and wide genetic diversity of E. bieneusi zoonotic strains in pigs in northeast China and the co-occurrence of seven known genotypes in pigs and humans and four in pigs and wastewater, pigs probably served as a reservoir for human microsporidiosis and an important source of water contamination in China.
Collapse
|
33
|
Karim MR, Wang R, He X, Zhang L, Li J, Rume FI, Dong H, Qi M, Jian F, Zhang S, Sun M, Yang G, Zou F, Ning C, Xiao L. Multilocus sequence typing of Enterocytozoon bieneusi in nonhuman primates in China. Vet Parasitol 2013; 200:13-23. [PMID: 24388499 DOI: 10.1016/j.vetpar.2013.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
To infer population genetics of Enterocytozoon bieneusi in nonhuman primates (NHPs), 126 positive specimens in 839 fecal specimens from 23 NHP species in China based on ITS locus were used, belonging to genotypes Type IV, D, Peru8, Henan V, Peru11, PigEBITS7 and 3 novel ones (CM1, CM2 and CM3). Multilocus sequence typing employing four micro and minisatellites (MS1, MS3, MS4 and MS7) and ITS were used to analyze population structure of 85 isolates successfully amplified at all five loci, which yielded 59 multilocus genotypes. Linkage disequilibrium (LD) was measured using both multilocus sequences and allelic profile data. The observation of strong and significant LD with limited recombination in multilocus sequence analysis indicated the presence of overall clonal population structure of E. bieneusi, which was supported by allelic profile data analysis. Fu's selective neutrality test demonstrated the absence of neutral mutations and molecular selection. The population structure of common ITS genotypes (CM1, Type IV and D) was compared. Strong LD in multilocus sequence analysis versus insignificant LD and/or LE in allelic profile data analysis implied epidemic population in common ITS genotypes. No significant genetic isolation was evidenced by either phylogenetic or substructural analyses. The population genetics was also compared among the sub-population 1 (contained mainly genotype Type IV), sub-population 2 (contained mainly genotypes CM1 and D), sub-population 3 (contained mixed genotypes) and sub-population 4 (contained genotype Henan V). The presence of strong LD in multilocus data analysis with insignificant LD and/or LE in allele profile data analysis suggested the epidemic population in sub-populations.
Collapse
Affiliation(s)
- Md Robiul Karim
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoyi He
- Xiangya School of Medicine, Central South University, 410013, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jian Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Farzana Islam Rume
- Department of Microbiology, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Haiju Dong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Fuchun Jian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Sumei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingfei Sun
- Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangyou Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, China
| | - Fengcai Zou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changshen Ning
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
34
|
Němejc K, Sak B, Květoňová D, Hanzal V, Janiszewski P, Forejtek P, Rajský D, Kotková M, Ravaszová P, McEvoy J, Kváč M. Prevalence and diversity of Encephalitozoon spp. and Enterocytozoon bieneusi in wild boars (Sus scrofa) in Central Europe. Parasitol Res 2013; 113:761-7. [PMID: 24292543 DOI: 10.1007/s00436-013-3707-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/17/2013] [Indexed: 10/26/2022]
Abstract
From 2011 to 2012, the occurrence of Enterocytozoon bieneusi and Encephalitozoon spp. was surveyed at 29 randomly selected localities (both forest areas and enclosures) across four Central European countries: Austria, the Czech Republic, Poland, and the Slovak Republic. Isolates were genotyped by PCR amplification and characterization of the internal transcribed spacer (ITS) region using Enterocytozoon and Encephalitozoon-specific protocols. PCR revealed 16 mono-infections of Encephalitozoon cuniculi, 33 mono-infections of Enterocytozoon bieneusi and 5 concurrent infections of both Encephalitozoon cuniculi and Enterocytozoon bieneusi out of 460 faecal samples. Two genotypes (I and II) were revealed by sequence analysis of the ITS region of Encephalitozoon cuniculi. Eleven genotypes, five previously found in other hosts including domestic pigs (D, EbpA, EbpC, G and Henan-I) and six novel (WildBoar1-6), were identified in Enterocytozoon bieneusi. No other microsporidia infection was found in the examined faecal samples. Prevalence of microsporidia at the locality level ranged from 0 to 58.8 %; the prevalence was less than 25 % at more than 86 % of localities. Enterocytozoon bieneusi was detected as a predominant species infecting Eurasian wild boars (Sus scrofa). The present report is the most comprehensive survey of microsporidia infections in wild boars within the Czech Republic and selected Central European countries.
Collapse
Affiliation(s)
- Karel Němejc
- Faculty of Agriculture, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Enterocytozoon bieneusi in Bovine Viral Diarrhea Virus (BVDV) infected and noninfected cattle herds. Res Vet Sci 2013; 94:100-4. [DOI: 10.1016/j.rvsc.2012.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 07/10/2012] [Indexed: 11/21/2022]
|
36
|
Epidemiology of Enterocytozoon bieneusi Infection in Humans. J Parasitol Res 2012; 2012:981424. [PMID: 23091702 PMCID: PMC3469256 DOI: 10.1155/2012/981424] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/20/2012] [Indexed: 11/21/2022] Open
Abstract
A review was conducted to examine published works that focus on the complex epidemiology of Enterocytozoon bieneusi infection in humans. Studies on the prevalence of these emerging microsporidian pathogens in humans, in developed and developing countries, the different clinical spectra of E. bieneusi intestinal infection in children, in different settings, and the risk factors associated with E. bieneusi infection have been reviewed. This paper also analyses the impact of the recent application of PCR-based molecular methods for species-specific identification and genotype differentiation has had in increasing the knowledge of the molecular epidemiology of E. bieneusi in humans. The advances in the epidemiology of E. bieneusi, in the last two decades, emphasize the importance of epidemiological control and prevention of E. bieneusi infections, from both the veterinary and human medical perspectives.
Collapse
|
37
|
Santín M, Dargatz D, Fayer R. Prevalence and genotypes of Enterocytozoon bieneusi in weaned beef calves on cow-calf operations in the USA. Parasitol Res 2011; 110:2033-41. [PMID: 22146995 DOI: 10.1007/s00436-011-2732-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
To determine the prevalence and genotype distribution of Enterocytozoon bieneusi in weaned beef calves in the USA, fecal samples were collected from 819 calves (6-18 months of age) from 49 operations. Feces were sieved and subjected to density gradient centrifugation to remove fecal debris and to concentrate spores. DNA extracted from each sample was subjected to the polymerase chain reaction (PCR) to amplify the complete internal transcriber spacer (ITS). All PCR-positive specimens were sequenced to determine the genotype(s) present. Overall, E. bieneusi was detected in 34.8% of the 819 fecal samples. The highest prevalence was found in the Midwest region (42.7%) followed by the South (35.8%) and the West (23.2%). The prevalence of E. bieneusi varied considerably from operation to operation (0-100%). A prevalence of 100% was observed in three operations, one in the Midwest and two in the South; E. bieneusi was not found in six operations, three in the South and three in the West. Sequence analysis revealed the presence of six genotypes, four previously reported (I, J, BEB4, and type IV) and two novel genotypes (BEB8 and BEB9). Mixed infections were identified in five specimens, three contained I and BEB4 and two contained J and BEB4. Most of the positive calves (238 of 285) harbored genotypes with zoonotic potential including I (59), J (108), BEB4 (65), type IV (1), mixed I/BEB4 (3), and mixed J/BEB4 (2).
Collapse
Affiliation(s)
- Mónica Santín
- United States Department of Agriculture, Environmental Microbial and Food Safety Laboratory, Animal and Natural Resources Institute Agricultural Research Service, Building 173, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
38
|
Microsporidiosis: Enterocytozoon bieneusi in domesticated and wild animals. Res Vet Sci 2011; 90:363-71. [DOI: 10.1016/j.rvsc.2010.07.014] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/13/2010] [Accepted: 07/18/2010] [Indexed: 11/23/2022]
|
39
|
Abstract
In this study, the prevalence of Enterocytozoon bieneusi in China was investigated. Twelve genotypes of E. bieneusi were identified, of which 10 were novel genotypes. Further, 41.6% of the genotypes were found in both humans and animals. This is the first report of E. bieneusi in China.
Collapse
|
40
|
Genotypic characterization of Enterocytozoon bieneusi in specimens from pigs and humans in a pig farm community in Central Thailand. J Clin Microbiol 2009; 47:1572-4. [PMID: 19321724 DOI: 10.1128/jcm.00187-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined that 15.7% of pigs and 1.4% of humans in a pig farm community in central Thailand harbored Enterocytozoon bieneusi. Genotyping of E. bieneusi from pigs showed genotypes O, E, and H. However, only genotype A was found in human subjects. This indicates nonzoonotic transmission of E. bieneusi in this community.
Collapse
|
41
|
Identification of Encephalitozoon cuniculi genotype III and two novel genotypes of Enterocytozoon bieneusi in swine. Parasitol Int 2009; 58:285-92. [PMID: 19318131 DOI: 10.1016/j.parint.2009.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 02/19/2009] [Accepted: 03/13/2009] [Indexed: 11/20/2022]
Abstract
Samples of intestinal content from thirty fattened pigs of six farms slaughtered at an abattoir in North-Western Germany, and faecal samples of four pigs kept as laboratory animals at the Federal Institute for Risk Assessment (BfR, Berlin, Germany) were investigated for the occurrence of microsporidia by light microscopy, PCR and sequencing. A modified Webers trichrome staining and the immunohistochemistry (the Avidin-Biotin-Peroxidase-Complex technique with a polyclonal anti-Encephalitozoon cuniculi-serum and monoclonal antibodies against Encephalitozoon intestinalis and Enterocytozoon bieneusi) was used as a screening method for the light microscopical detection of these pathogenic eukaryotes. By this light microscopically methods microsporidia suspected organisms were found in all samples (100%). By the use of PCR, microsporidia were identified in fourteen samples (41.2%). The prevalence of microsporidia infections among the farms diversifies from 0 to 80% as considered by PCR. E. bieneusi was the most prevalent species and was identified in twelve fattened pigs (40%) from five of the six tested farms (83.3%) and in two of the four laboratory animals (50%). Three of the E. bieneusi species belonged to the genotype O, one to the genotype E, and one to the genotype F. Two isolates were identified as novel genotypes and two samples showed a mixed infection of different genotypes. In three faecal samples of the pigs from two farms E. cuniculi genotype III was identified. One sample contained both microsporidia species. To our knowledge, this is the first time that the genotype III of E. cuniculi was identified in swine.
Collapse
|