1
|
Zingales B, Macedo AM. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life (Basel) 2023; 13:2339. [PMID: 38137940 PMCID: PMC10744745 DOI: 10.3390/life13122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease (ChD), exhibits striking genetic and phenotypic intraspecific diversity, along with ecoepidemiological complexity. Human-pathogen interactions lead to distinct clinical presentations of ChD. In 2009, an international consensus classified T. cruzi strains into six discrete typing units (DTUs), TcI to TcVI, later including TcBat, and proposed reproducible genotyping schemes for DTU identification. This article aims to review the impact of classifying T. cruzi strains into DTUs on our understanding of biological, ecoepidemiological, and pathogenic aspects of T. cruzi. We will explore the likely origin of DTUs and the intrinsic characteristics of each group of strains concerning genome organization, genomics, and susceptibility to drugs used in ChD treatment. We will also provide an overview of the association of DTUs with mammalian reservoirs, and summarize the geographic distribution, and the clinical implications, of prevalent specific DTUs in ChD patients. Throughout this review, we will emphasize the crucial roles of both parasite and human genetics in defining ChD pathogenesis and chemotherapy outcome.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andréa M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| |
Collapse
|
2
|
Discrete Typing Units of Trypanosoma cruzi Identified by Real-Time PCR in Peripheral Blood and Dejections of Triatoma infestans Used in Xenodiagnosis Descriptive Study. Pathogens 2022; 11:pathogens11070787. [PMID: 35890030 PMCID: PMC9317341 DOI: 10.3390/pathogens11070787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Chagas disease (ChD) is a vector zoonosis native to the American continent caused by the protozoan parasite Trypanosoma cruzi; the biological vectors are multiple species of hematophagous insects of the family Triatominae. A relevant aspect in the host–parasite relationship is the identification of the various genotypes of T. cruzi called discrete typing units (DTU) that circulate in mammals and vectors. In Chile, it has been described that the DTUs TcI, TcII, TcV, and TcVI circulate in infected humans, vectors, and wild animals. Identifying DTUs has acquired clinical importance, since it has been suggested that different genotypes could cause distinct pathologies, circulate in different geographical areas, and present different sensitivities to trypanocidal drugs. In this study, circulating T. cruzi DTUs in peripheral blood and Triatoma infestans dejections used in xenodiagnosis (XD) were amplified by qPCR in 14 Chilean patients with chronic ChD from highly endemic areas. More positive samples were detected by XD compared to peripheral blood samples, and 64.28% of the cases were simple infections and 35.72% mixed, with a statistically significant difference in the frequency of TcV DTU. This study would suggest that T. infestans from Chile is more competent to amplify one DTU over others, probably due to a process of co-evolution.
Collapse
|
3
|
Ribeiro AR, Lima L, de Almeida LA, Monteiro J, Moreno CJG, Nascimento JD, de Araújo RF, Mello F, Martins LPA, Graminha MAS, Teixeira MMG, Silva MS, Steindel M, da Rosa JA. Biological and Molecular Characterization of Trypanosoma cruzi Strains from Four States of Brazil. Am J Trop Med Hyg 2018; 98:453-463. [PMID: 29313485 PMCID: PMC5929169 DOI: 10.4269/ajtmh.16-0200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 01/29/2017] [Indexed: 11/07/2022] Open
Abstract
Chagas disease affects between six and seven million people. Its etiological agent, Trypanosoma cruzi, is classified into six discrete typing units (DTUs). The biological study of 11 T. cruzi strains presented here included four parameters: growth kinetics, parasitemia curves, rate of macrophage infection, and serology to evaluate IgM, total IgG, IgG1, IgG2a, and IgG3. Sequencing of small subunit of ribosomal RNA (SSU rRNA)was performed and the T. cruzi strains were classified into three DTUs. When their growth in liver infusion tryptose medium was represented in curves, differences among the strains could be noted. The parasitemia profile varied among the strains from the TcI, TcII, and TcIII groups, and the 11 T. cruzi strains produced distinct parasitemia levels in infected BALB/c. The TcI group presented the highest rate of macrophage infection by amastigotes, followed by TcII and TcIII. Reactivity to immunoglobulins was observed in the TcI, TcII, and TcIII; all the animals infected with the different strains of T. cruzi showed anti-T. cruzi antibodies. The molecular study presented here resulted in the classification of the T. cruzi strains into the TcI (Bolivia, T lenti, Tm, SC90); TcII (Famema, SC96, SI8, Y); and TcIII (QMM3, QMM5, SI5) groups. These biological and molecular results from 11 T. cruzi strains clarified the factors involved in the biology of the parasite and its hosts. The collection of triatomine (vector) species, and the study of geographic distribution, as well as biological and molecular characterization of the parasite, will contribute to the reporting and surveillance measures in Brazilian states.
Collapse
Affiliation(s)
| | - Luciana Lima
- Department of Parasitology, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa Aguiar de Almeida
- Department of Biological Sciences, Faculdade de Ciências Farmacêuticas da Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | - Joana Monteiro
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cláudia Jassica Gonçalves Moreno
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Biociência, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | - Fernanda Mello
- Rio Grande do Sul State Health Secretariat, Porto Alegre, Brazil
| | | | - Márcia Aparecida Silva Graminha
- Department of Biological Sciences, Faculdade de Ciências Farmacêuticas da Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | | | - Marcelo Sousa Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Biociência, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Mário Steindel
- Department of Microbiology, Immunology, and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - João Aristeu da Rosa
- Department of Biological Sciences, Faculdade de Ciências Farmacêuticas da Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| |
Collapse
|
4
|
Higuera A, Ramírez JD. The Colombian peace deal and its impact on the evolution of tropical diseases agents. INFECTION GENETICS AND EVOLUTION 2017; 57:145-150. [PMID: 29180270 DOI: 10.1016/j.meegid.2017.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Adriana Higuera
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas - UR (GIMUR), Bogotá, Colombia
| | - Juan David Ramírez
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas - UR (GIMUR), Bogotá, Colombia.
| |
Collapse
|
5
|
Volpato FCZ, Sousa GR, D'Ávila DA, Galvão LMDC, Chiari E. Combined parasitological and molecular-based diagnostic tools improve the detection of Trypanosoma cruzi in single peripheral blood samples from patients with Chagas disease. Rev Soc Bras Med Trop 2017; 50:506-515. [PMID: 28954072 DOI: 10.1590/0037-8682-0046-2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/10/2017] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION In order to detect Trypanosoma cruzi and determine the genetic profiles of the parasite during the chronic phase of Chagas disease (ChD), parasitological and molecular diagnostic methods were used to assess the blood of 91 patients without specific prior treatment. METHODS Blood samples were collected from 68 patients with cardiac ChD and 23 patients with an indeterminate form of ChD, followed by evaluation using blood culture and polymerase chain reaction. T . cruzi isolates were genotyped using three different genetic markers. RESULTS: Blood culture was positive in 54.9% of all patients, among which 60.3% had the cardiac form of ChD, and 39.1% the indeterminate form of ChD. There were no significant differences in blood culture positivity among patients with cardiac and indeterminate forms. Additionally, patient age and clinical forms did not influence blood culture results. Polymerase chain reaction (PCR) was positive in 98.9% of patients, although comparisons between blood culture and PCR results showed that the two techniques did not agree. Forty-two T . cruzi stocks were isolated, and TcII was detected in 95.2% of isolates. Additionally, one isolate corresponded to TcIII or TcIV, and another corresponded to TcV or TcVI. CONCLUSIONS Blood culture and PCR were both effective for identifying T. cruzi using a single blood sample, and their association did not improve parasite detection. However, we were not able to establish an association between the clinical form of ChD and the genetic profile of the parasite.
Collapse
Affiliation(s)
- Fabiana Caroline Zempulski Volpato
- Programa de Pós-Graduação em Parasitologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Giovane Rodrigo Sousa
- Section on Immunobiology, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniella Alchaar D'Ávila
- Programa de Pós-Graduação em Parasitologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Lúcia Maria da Cunha Galvão
- Programa de Pós-Graduação em Parasitologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Egler Chiari
- Programa de Pós-Graduação em Parasitologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
6
|
Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasit Vectors 2017; 10:287. [PMID: 28595622 PMCID: PMC5463341 DOI: 10.1186/s13071-017-2204-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatids are protozoan parasites of the class Kinetoplastida predominately restricted to invertebrate hosts (i.e. possess a monoxenous life-cycle). However, several genera are pathogenic to humans, animals and plants, and have an invertebrate vector that facilitates their transmission (i.e. possess a dixenous life-cycle). Phytomonas is one dixenous genus that includes several plant pathogens transmitted by phytophagous insects. Trypanosoma and Leishmania are dixenous genera that infect vertebrates, including humans, and are transmitted by hematophagous invertebrates. Traditionally, monoxenous trypanosomatids such as Leptomonas were distinguished from morphologically similar dixenous species based on their restriction to an invertebrate host. Nonetheless, this criterion is somewhat flawed as exemplified by Leptomonas seymouri which reportedly infects vertebrates opportunistically. Similarly, Novymonas and Zelonia are presumably monoxenous genera yet sit comfortably in the dixenous clade occupied by Leishmania. The isolation of Leishmania macropodum from a biting midge (Forcipomyia spp.) rather than a phlebotomine sand fly calls into question the exclusivity of the Leishmania-sand fly relationship, and its suitability for defining the Leishmania genus. It is now accepted that classic genus-defining characteristics based on parasite morphology and host range are insufficient to form the sole basis of trypanosomatid taxonomy as this has led to several instances of paraphyly. While improvements have been made, resolution of evolutionary relationships within the Trypanosomatidae is confounded by our incomplete knowledge of its true diversity. The known trypanosomatids probably represent a fraction of those that exist and isolation of new species will help resolve relationships in this group with greater accuracy. This review incites a dialogue on how our understanding of the relationships between certain trypanosomatids has shifted, and discusses new knowledge that informs the present taxonomy of these important parasites.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Damien Stark
- Department of Microbiology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010 Australia
| | - Joel Barratt
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
7
|
Bontempi IA, Bizai ML, Ortiz S, Manattini S, Fabbro D, Solari A, Diez C. Simple methodology to directly genotype Trypanosoma cruzi discrete typing units in single and mixed infections from human blood samples. INFECTION GENETICS AND EVOLUTION 2016; 43:123-9. [DOI: 10.1016/j.meegid.2016.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022]
|
8
|
Díaz ML, Leal S, Mantilla JC, Molina-Berríos A, López-Muñoz R, Solari A, Escobar P, González Rugeles CI. Acute Chagas outbreaks: molecular and biological features of Trypanosoma cruzi isolates, and clinical aspects of acute cases in Santander, Colombia. Parasit Vectors 2015; 8:608. [PMID: 26612724 PMCID: PMC4661967 DOI: 10.1186/s13071-015-1218-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Outbreaks of acute Chagas disease associated with oral transmission are easily detected nowadays with trained health personnel in areas of low endemicity, or in which the vector transmission has been interrupted. Given the biological and genetic diversity of Trypanosoma cruzi, the high morbidity, mortality, and the observed therapeutic failure, new characteristics of these outbreaks need to be addressed at different levels, both in Trypanosoma cruzi as in patient response. The aim of this work was to evaluate the patient's features involved in six outbreaks of acute Chagas disease which occurred in Santander, Colombia, and the characteristics of Trypanosoma cruzi clones isolated from these patients, to establish the potential relationship between the etiologic agent features with host behavior. METHODS The clinical, pathological and epidemiological aspects of outbreaks were analyzed. In addition, Trypanosoma cruzi clones were biologically characterized both in vitro and in vivo, and the susceptibility to the classical trypanocidal drugs nifurtimox and benznidazole was evaluated. Trypanosoma cruzi clones were genotyped by means of mini-exon intergenic spacer and cytochrome b genes sequencing. RESULTS All clones were DTU I, and based on the mini-exon intergenic spacer, belong to two genotypes: G2 related with sub-urban, and G11 with rural outbreaks. Girón outbreak clones with higher susceptibility to drugs presented G2 genotype and C/T transition in Cyt b. The outbreaks affected mainly young population (±25.9 years), and the mortality rate was 10 %. The cardiac tissue showed intense inflammatory infiltrate, myocardial necrosis and abundant amastigote nests. However, although the gastrointestinal tissue was congestive, no inflammation or parasites were observed. CONCLUSIONS Although all clones belong to DTU I, two intra-DTU genotypes were found with the sequencing of the mini-exon intergenic spacer, however there is no strict correlation between genetic groups, the cycles of the parasite or the clinical forms of the disease. Trypanosoma cruzi clones from Girón with higher sensitivity to nifurtimox presented a particular G2 genotype and C/T transition in Cyt b. When the diagnosis was early, the patients responded well to antichagasic treatment, which highlights the importance of diagnosis and treatment early to prevent fatal outcomes associated with these acute episodes.
Collapse
Affiliation(s)
- Martha Lucía Díaz
- Grupo de Inmunología y Epidemiología Molecular (GIEM), Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Sandra Leal
- Grupo de Investigación en Enfermedades Tropicales (CINTROP), Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Julio César Mantilla
- Grupo de Inmunología y Epidemiología Molecular (GIEM), Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Alfredo Molina-Berríos
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile. .,Present address: Laboratorio de Farmacología y Farmacogenética, Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile.
| | - Rodrigo López-Muñoz
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile. .,Present address: Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Patricia Escobar
- Grupo de Investigación en Enfermedades Tropicales (CINTROP), Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Clara Isabel González Rugeles
- Grupo de Inmunología y Epidemiología Molecular (GIEM), Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia. .,Escuela de Microbiología, Facultad de Salud, Carrera 32 #29-31, Oficina 419, Universidad Industrial de Santander, Bucaramanga, Colombia.
| |
Collapse
|
9
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Peterson JK, Graham AL, Dobson AP, Chávez OT. Rhodnius prolixus Life History Outcomes Differ when Infected with Different Trypanosoma cruzi I Strains. Am J Trop Med Hyg 2015; 93:564-72. [PMID: 26078316 DOI: 10.4269/ajtmh.15-0218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/02/2015] [Indexed: 12/20/2022] Open
Abstract
The effect of a parasite on the life history of its vector is important for understanding and predicting disease transmission. Chagas disease agent Trypanosoma cruzi is a generalist parasite that is diverse across scales from its genetic diversity to the 100s of mammal and vector species it infects. Its vertebrate hosts show quite variable responses to infection, however, to date there are no studies looking at how T. cruzi variability might result in variable outcomes in its invertebrate host. Therefore, we investigated the effect of different T. cruzi I strains on Rhodnius prolixus survival and development. We found significant variation between insects infected with different strains, with some strains having no effect, as compared with uninfected insects, and others with significantly lower survival and development. We also found that different variables had varying importance between strains, with the effect of time postinfection and the blood:weight ratio of the infective meal significantly affecting the survival of insects infected with some strains, but not others. Our results suggest that T. cruzi can be pathogenic not only to its vertebrate hosts but also to its invertebrate hosts.
Collapse
Affiliation(s)
- Jennifer K Peterson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| | - Omar Triana Chávez
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey; Grupo BCEI, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
11
|
León CM, Hernández C, Montilla M, Ramírez JD. Retrospective distribution of Trypanosoma cruzi I genotypes in Colombia. Mem Inst Oswaldo Cruz 2015; 110:387-93. [PMID: 25946157 PMCID: PMC4489476 DOI: 10.1590/0074-02760140402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/25/2015] [Indexed: 12/03/2022] Open
Abstract
Trypanosoma cruzi is the aetiological agent of Chagas disease, which
affects approximately eight million people in the Americas. This parasite exhibits
genetic variability, with at least six discrete typing units broadly distributed in
the American continent. T. cruzi I (TcI) shows remarkable genetic
diversity; a genotype linked to human infections and a domestic cycle of transmission
have recently been identified, hence, this strain was named TcIDom. The aim of this
work was to describe the spatiotemporal distribution of TcI subpopulations across
humans, insect vectors and mammalian reservoirs in Colombia by means of molecular
typing targeting the spliced leader intergenic region of mini-exon gene. We analysed
101 TcI isolates and observed a distribution of sylvatic TcI in 70% and TcIDom in
30%. In humans, the ratio was sylvatic TcI in 60% and TcIDom in 40%. In mammal
reservoirs, the distribution corresponded to sylvatic TcI in 96% and TcIDom in 4%.
Among insect vectors, sylvatic TcI was observed in 48% and TcIDom in 52%. In
conclusion, the circulation of TcIDom is emerging in Colombia and this genotype is
still adapting to the domestic cycle of transmission. The epidemiological and
clinical implications of these findings are discussed herein.
Collapse
Affiliation(s)
- Cielo M León
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
| | | | - Marleny Montilla
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
12
|
Villa LM, Guhl F, Zabala D, Ramírez JD, Urrea DA, Hernández DC, Cucunubá Z, Montilla M, Carranza JC, Rueda K, Trujillo JE, Vallejo GA. The identification of two Trypanosoma cruzi I genotypes from domestic and sylvatic transmission cycles in Colombia based on a single polymerase chain reaction amplification of the spliced-leader intergenic region. Mem Inst Oswaldo Cruz 2015; 108:932-5. [PMID: 24037107 PMCID: PMC3970654 DOI: 10.1590/0074-0276130201] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/31/2013] [Indexed: 11/21/2022] Open
Abstract
A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruzi I to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.
Collapse
Affiliation(s)
- Lina Marcela Villa
- Universidad del Tolima, Laboratorio de Investigaciones en Parasitología Tropical, Altos de Santa HelenaIbagué, Colombia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Peña-García VH, Gómez-Palacio AM, Triana-Chávez O, Mejía-Jaramillo AM. Eco-epidemiology of Chagas disease in an endemic area of Colombia: risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. Am J Trop Med Hyg 2014; 91:1116-24. [PMID: 25331808 DOI: 10.4269/ajtmh.14-0112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The Sierra Nevada de Santa Marta (SNSM) is a mountainous area in Colombia that is highly endemic to Chagas disease. We explored some eco-epidemiological attributes involved in the Chagas disease transmission scenario in three Indigenous communities. An epidemiological survey was done, where parasite infection in reservoirs and insects, Trypanosoma cruzi genotyping, identification of blood-meal sources in intradomiciliary insects using the high-resolution melting technique, and some risk factors were evaluated. The results suggest that several dwelling conditions such as thatched palm roofs and mud walls carried the highest risk of finding intradomiciliary Rhodnius prolixus, which 56.41% were infected with T. cruzi and fed with human blood. Moreover, T. cruzi Ia was the most frequent haplotype found in insects. These results indicate the existence of a domestic T. cruzi transmission cycle that does not overlap with the sylvatic cycle, and highlight the need for efficient entomological control focused to this area.
Collapse
Affiliation(s)
- Víctor H Peña-García
- Grupo Biología y Control de Enfermedades Infecciosas - BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Andrés M Gómez-Palacio
- Grupo Biología y Control de Enfermedades Infecciosas - BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas - BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Ana M Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas - BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
14
|
Bhattacharyya T, Falconar AK, Luquetti AO, Costales JA, Grijalva MJ, Lewis MD, Messenger LA, Tran TT, Ramirez JD, Guhl F, Carrasco HJ, Diosque P, Garcia L, Litvinov SV, Miles MA. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition. PLoS Negl Trop Dis 2014; 8:e2892. [PMID: 24852444 PMCID: PMC4031129 DOI: 10.1371/journal.pntd.0002892] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Background Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI–TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. Methodology/Principal Findings We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. Conclusions/Significance These results demonstrate the considerable potential for synthetic peptide serology to investigate the infection history of individuals, geographical and clinical associations of T. cruzi lineages. Chagas disease remains a significant public health issue in Latin America. Caused by the single-celled parasite Trypanosoma cruzi, the main route of infection is via contact with contaminated faeces from blood-sucking triatomine bugs, but following successful insecticide spraying campaigns, congenital, food-borne, and transfusion/transplantation routes of infection have become more relevant. In the absence of successful chemotherapy, T. cruzi usually persists in the body for life, and in symptomatic cases may lead to death or debilitation by heart failure and/or gastrointestinal megasyndromes. As a species, T. cruzi displays great genetic diversity, and is subdivided into lineages called TcI - TcVI. Associating T. cruzi lineage with clinical symptoms is a key goal of Chagas disease research. Direct isolation and typing of T. cruzi from chronically infected patients is hampered by the sequestration of the parasite in host tissues. Identifying lineage-specific antibodies in serum provides an alternative approach to determining an individual's history of infection. Here, we performed lineage-specific serology using samples from a range of South American countries. We show that lineage-specific seropositivity is associated with geographical distributions and clinical outcome. These findings have wide implications for further diagnostics development and improved understanding of the epidemiology of Chagas disease.
Collapse
Affiliation(s)
- Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | | | - Alejandro O. Luquetti
- Laboratorio de Chagas, Hospital das Clinicas, Universidade Federal de Goiás, Goiânia, Goias, Brazil
| | - Jaime A. Costales
- Centro de Investigación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Mario J. Grijalva
- Centro de Investigación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| | - Michael D. Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Trang T. Tran
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Juan-David Ramirez
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Universidad de los Andes, Bogotá, Colombia
| | - Hernan J. Carrasco
- Universidad Central de Venezuela Instituto de Medicina Tropical, Caracas, Venezuela
| | - Patricio Diosque
- Unidad de Epidemiología Molecular, Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta, Salta, Argentina
| | - Lineth Garcia
- Facultad de Medicina, Universidad Mayor de San Simón, Cochabamba, Bolivia
| | | | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
15
|
Poveda C, Fresno M, Gironès N, Martins-Filho OA, Ramírez JD, Santi-Rocca J, Marin-Neto JA, Morillo CA, Rosas F, Guhl F. Cytokine profiling in Chagas disease: towards understanding the association with infecting Trypanosoma cruzi discrete typing units (a BENEFIT TRIAL sub-study). PLoS One 2014; 9:e91154. [PMID: 24608170 PMCID: PMC3946691 DOI: 10.1371/journal.pone.0091154] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 02/10/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Chagas disease caused by the protozoan Trypanosoma cruzi is an important public health problem in Latin America. The immunological mechanisms involved in Chagas disease pathogenesis remain incompletely elucidated. The aim of this study was to explore cytokine profiles and their possible association to the infecting DTU and the pathogenesis of Chagas disease. METHODS 109 sero-positive T. cruzi patients and 21 negative controls from Bolivia and Colombia, were included. Flow cytometry assays for 13 cytokines were conducted on human sera. Patients were divided into two groups: in one we compared the quantification of cytokines between patients with and without chronic cardiomyopathy; in second group we compared the levels of cytokines and the genetic variability of T. cruzi. RESULTS Significant difference in anti-inflammatory and pro-inflammatory cytokines profiles was observed between the two groups cardiac and non-cardiac. Moreover, serum levels of IFN-γ, IL-12, IL-22 and IL-10 presented an association with the genetic variability of T.cruzi, with significant differences in TcI and mixed infections TcI/TcII. CONCLUSION Expression of anti-inflammatory and pro-inflammatory cytokines may play a relevant role in determining the clinical presentation of chronic patients with Chagas disease and suggests the occurrence of specific immune responses, probably associated to different T. cruzi DTUs.
Collapse
Affiliation(s)
- Cristina Poveda
- Centro de investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, Madrid, Spain
| | - Olindo A. Martins-Filho
- Laboratory of Diagnostic and Monitoring Biomarkers, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Juan David Ramírez
- Centro de investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Julien Santi-Rocca
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, Madrid, Spain
| | - José A. Marin-Neto
- Cardiology Division, Internal Medicine Department, Medical School of Ribeirao Preto, Universidad de Sao Paulo, Sao Paulo, Brazil
| | - Carlos A. Morillo
- Department of Medicine, Cardiology Division, McMaster University, PHRI-HHSC, Hamilton, Ontario, Canada
| | - Fernando Rosas
- Electrofisiología, Clínica Abood Shaio, Bogotá, Colombia
| | - Felipe Guhl
- Centro de investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
- * E-mail:
| |
Collapse
|
16
|
da Câmara ACJ, Lages-Silva E, Sampaio GHF, D’Ávila DA, Chiari E, Galvão LMDC. Homogeneity of Trypanosoma cruzi I, II, and III populations and the overlap of wild and domestic transmission cycles by Triatoma brasiliensis in northeastern Brazil. Parasitol Res 2013; 112:1543-50. [DOI: 10.1007/s00436-013-3301-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/11/2013] [Indexed: 11/29/2022]
|
17
|
Moreira OC, Ramírez JD, Velázquez E, Melo MFAD, Lima-Ferreira C, Guhl F, Sosa-Estani S, Marin-Neto JA, Morillo CA, Britto C. Towards the establishment of a consensus real-time qPCR to monitor Trypanosoma cruzi parasitemia in patients with chronic Chagas disease cardiomyopathy: a substudy from the BENEFIT trial. Acta Trop 2013; 125:23-31. [PMID: 22982466 DOI: 10.1016/j.actatropica.2012.08.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/10/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022]
Abstract
Quantitative real-time PCR (qPCR) is an accurate method to quantify Trypanosoma cruzi DNA and can be used to follow-up parasitemia in Chagas disease (CD) patients undergoing chemotherapy. The Benznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT) study is an international, multicenter, randomized, double-blinded and placebo-controlled clinical trial to evaluate the efficacy of benznidazole (BZ) treatment in patients with chronic Chagas cardiomyopathy (CCC). One important question to be addressed concerns the effectiveness of BZ in reducing overall parasite load in CCC patients, even in the absence of parasitological cure. This report describes the evaluation of multiple procedures for DNA extraction and qPCR-based protocols aiming to establish a standardized methodology for the absolute quantification of T. cruzi DNA in Guanidine-EDTA blood (GEB) samples. A panel of five primer sets directed to the T. cruzi nuclear satellite DNA repeats (Sat-DNA) and to the minicircle DNA conserved regions (kDNA) was compared in either SYBR Green or TaqMan systems. Standard curve parameters such as, amplification efficiency, coefficient of determination and intercept were evaluated, as well as different procedures to generate standard samples containing pre-established T. cruzi DNA concentration. Initially, each primer set was assayed in a SYBR Green qPCR to estimate parasite load in GEB samples from chronic Chagas disease patients. The results achieved from Bayesian transmutability analysis elected the primer sets Cruzi1/Cruzi2 (p=0.0031) and Diaz7/Diaz8 (p=0.0023) coupled to the QIAamp DNA Kit extraction protocol (silica gel column), as the most suitable for monitoring parasitemia in these patients. Comparison between the parasite burden of 150 GEB samples of BENEFIT patients from Argentina, Brazil and Colombia, prior to drug/placebo administration, was performed using Cruzi1/Cruzi2 primers in a SYBR Green approach. The median parasitemia found in patients from Argentina and Colombia (1.93 and 2.31 parasite equivalents/mL, respectively) was around 20 times higher than the one estimated for the Brazilian patients (0.1 parasite equivalents/mL). This difference could be in part due to the complexity of T. cruzi genetic diversity, which is a factor possibly implicated in different clinical presentations of the disease and/or influencing parasitemia levels in infected individuals from different regions of Latin America. The results of SYBR Green qPCR assays herein presented prove this methodology to be more cost efficient than the alternative use of internal fluorogenic probes. In addition, its sensitivity and reproducibility are shown to be adequate to detect low parasitemia burden in patients with chronic Chagas disease.
Collapse
Affiliation(s)
- Otacilio C Moreira
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ramírez JD, Duque MC, Montilla M, Cucunubá ZM, Guhl F. Multilocus PCR-RFLP profiling in Trypanosoma cruzi I highlights an intraspecific genetic variation pattern. INFECTION GENETICS AND EVOLUTION 2012; 12:1743-50. [PMID: 22824418 DOI: 10.1016/j.meegid.2012.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 11/15/2022]
Abstract
Chagas disease represents a serious problem in public health. This zoonotic pathology is caused by the kinetoplastid Trypanosoma cruzi which displays a high genetic diversity falling into six Discrete Typing Units (TcI-TcVI). In Colombia, the prevalent DTU is TcI with findings of TcII, TcIII and TcIV in low proportions. The aim of this work was to observe the genetic variability within TcI using a multilocus PCR-RFLP strategy. We analyzed 70 single-celled clones from triatomines, reservoirs and humans that were amplified and restricted via ten PCR-RFLPs targets across TcI genome, the restriction fragments were used to construct phylograms according to calculated genetic distances. We obtained five polymorphic targets (1f8, HSP60, HSP70, SAPA and H1) and the consensus tree constructed according to these regions allowed us to observe two well-defined groups with close association to the transmission cycles (domestic/peridomestic and sylvatic) of Chagas disease in Colombia. Our findings allowed us to corroborate the previous reported genotypes based on the intergenic region of mini-exon gene. More studies examining the genetic diversity among T. cruzi I populations must be conducted in order to obtain a better understanding in regions where this DTU is endemic.
Collapse
Affiliation(s)
- Juan David Ramírez
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Facultad de Ciencias, Universidad de los Andes, Cra 1 No 18A-20, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
19
|
Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MMG, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. INFECTION GENETICS AND EVOLUTION 2011; 12:240-53. [PMID: 22226704 DOI: 10.1016/j.meegid.2011.12.009] [Citation(s) in RCA: 623] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
The protozoan Trypanosoma cruzi, its mammalian reservoirs, and vectors have existed in nature for millions of years. The human infection, named Chagas disease, is a major public health problem for Latin America. T. cruzi is genetically highly diverse and the understanding of the population structure of this parasite is critical because of the links to transmission cycles and disease. At present, T. cruzi is partitioned into six discrete typing units (DTUs), TcI-TcVI. Here we focus on the current status of taxonomy-related areas such as population structure, phylogeographical and eco-epidemiological features, and the correlation of DTU with natural and experimental infection. We also summarize methods for DTU genotyping, available for widespread use in endemic areas. For the immediate future multilocus sequence typing is likely to be the gold standard for population studies. We conclude that greater advances in our knowledge on pathogenic and epidemiological features of these parasites are expected in the coming decade through the comparative analysis of the genomes from isolates of various DTUs.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abolis NG, Marques de Araújo S, Toledo MJDO, Fernandez MA, Gomes ML. Trypanosoma cruzi I-III in southern Brazil causing individual and mixed infections in humans, sylvatic reservoirs and triatomines. Acta Trop 2011; 120:167-72. [PMID: 21855523 DOI: 10.1016/j.actatropica.2011.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 07/23/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
The aim of this study was to characterise Discrete Typing Units (DTUs) of 28 isolates of Trypanosoma cruzi from humans (15), triatomines (9), and opossums (4) in the state of Paraná, southern Brazil. For this purpose, we analysed the size polymorphism at the 3' end of the 24Sα ribosomal RNA gene (rRNA) and the restriction fragment length polymorphism (RFLP) of the partial 5' sequence of the mitochondrial Cytochrome Oxidase subunit II gene (COII). Band patterns of the isolates were compared with reference samples of T. cruzi I (Silvio X10 and Col 17G2), T. cruzi II (Esmeraldo and JG), T. cruzi III (222 and 231), T. cruzi IV (CAN III), T. cruzi V (SO3 cl5), and T. cruzi VI (CL Brener). Our results confirmed that rRNA analysis is of limited use for assessing T. cruzi DTUs. COII RFLP analysis was suitable for screening, but for one isolate it was necessary to determine the COII partial sequence to identify the DTU. Only one of the isolates from humans belonged to T. cruzi I; 13 isolates belonged to T. cruzi II and one to T. cruzi III. The four isolates from opossums and five isolates from triatomines were identified as T. cruzi I. Four isolates from triatomines showed patterns of both T. cruzi I and II, indicating mixed infections. This study contributes to the characterisation of the dynamics of T. cruzi populations in southern Brazil.
Collapse
|
21
|
Duque MC, Ramírez JD, Rendón LM, Guhl F. Evaluación de la variabilidad genética de aislamientos colombianos de Trypanosoma cruzi mediante marcadores microsatélites. INFECTIO 2011. [DOI: 10.1016/s0123-9392(11)70736-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
22
|
Mantilla JC, Suárez EU, Barraza MF. Enfermedad de Chagas: correlación clínico-patológica. Serie de casos del Hospital Universitario de Santander - Departamento de Patología, Universidad Industrial de Santander. REVISTA COLOMBIANA DE CARDIOLOGÍA 2011. [DOI: 10.1016/s0120-5633(11)70195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
23
|
Díaz M, Solari A, González C. Differential expression of Trypanosoma cruzi I associated with clinical forms of Chagas disease: Overexpression of oxidative stress proteins in acute patient isolate. J Proteomics 2011; 74:1673-82. [DOI: 10.1016/j.jprot.2011.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/30/2011] [Accepted: 05/03/2011] [Indexed: 12/20/2022]
|
24
|
Expresión diferencial entre estadios de Trypanosoma cruzi I en el aislamiento de un paciente con cardiomiopatía chagásica crónica de zona endémica de Santander, Colombia. BIOMEDICA 2011. [DOI: 10.7705/biomedica.v31i4.400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Risso MG, Sartor PA, Burgos JM, Briceño L, Rodríguez EM, Guhl F, Chavez OT, Espinoza B, Monteón VM, Russomando G, Schijman AG, Bottasso OA, Leguizamón MS. Immunological identification of Trypanosoma cruzi lineages in human infection along the endemic area. Am J Trop Med Hyg 2011; 84:78-84. [PMID: 21212206 DOI: 10.4269/ajtmh.2011.10-0177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Genotyping studies show a polarized geographic distribution of Trypanosoma cruzi lineages in humans. Here, we assessed their distribution along Latin America through an immunological approach we designated Western blot (WB) assay with Trypomastigote small-surface antigen (TSSA) I and TSSA II (TSSA-WB). These antigens are expressed by T. cruzi I (TCI; now TcI) and T. cruzi II (TCII; reclassified as TcII to TcVI) parasites. TSSA-WB showed good concordance with genotyping tests. An unexpected frequency of TSSA II recognition was observed in Colombia, Venezuela, and Mexico (northern region of Latin America). In Argentina and Paraguay (southern region), immunophenotyping confirmed the already reported TCII (TcII to TcVI) dominance. The lineage distribution between these regions showed significant difference but not among countries within them (except for Colombia and Venezuela). TSSA-WB shows TCII emergence in the northern region where TCI was reported as dominant or even as the unique T. cruzi lineage infecting humans.
Collapse
Affiliation(s)
- Marikena G Risso
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zafra G, Mantilla JC, Jácome J, Macedo AM, González CI. Direct analysis of genetic variability in Trypanosoma cruzi populations from tissues of Colombian chagasic patients. Hum Pathol 2011; 42:1159-68. [PMID: 21333323 DOI: 10.1016/j.humpath.2010.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/12/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022]
Abstract
The clinical symptoms of Chagas disease are highly variable and are correlated with geographical distribution and parasite genetic group. Trypanosoma cruzi group I is associated with chagasic cardiomyopathy in Colombia and other countries in northern South America. However, in southern South America, T cruzi group II predominates and is associated with cardiomyopathy and digestive forms of the disease. The aim of this work was to determine the correlation between the genetic profiles of T cruzi groups circulating in the biological cycle and those present in tissues from patients with Chagas disease. We genotyped T cruzi in 10 heart tissue samples from patients with cardiomyopathy from a highly endemic area of Colombia. The genotyping was performed using nuclear and mitochondrial genes and low-stringency single-specific primer polymerase chain reaction. As expected, the predominant genetic group was T cruzi group I; however, we also detected T cruzi group II. Microsatellite analyses suggested a predominance of monoclonal populations, and sequence alignments showed similarities with Colombian strains. In addition, kinetoplast DNA signatures obtained by low-stringency single-specific primer polymerase chain reaction allowed us to group strains into the 2 genetic groups. Thus, we conclude that both T cruzi genetic groups are producing severe cases of Chagas disease in Colombia. We did not observe any correlation between low-stringency single-specific primer polymerase chain reaction profiles, histopathologic findings, clinical forms, and severity of Chagas disease.
Collapse
Affiliation(s)
- German Zafra
- Grupo de Inmunología y Epidemiología Molecular, GIEM, Universidad Industrial de Santander, Bucaramanga-Colombia
| | | | | | | | | |
Collapse
|
27
|
Ocaña-Mayorga S, Llewellyn MS, Costales JA, Miles MA, Grijalva MJ. Sex, subdivision, and domestic dispersal of Trypanosoma cruzi lineage I in southern Ecuador. PLoS Negl Trop Dis 2010; 4:e915. [PMID: 21179502 PMCID: PMC3001902 DOI: 10.1371/journal.pntd.0000915] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022] Open
Abstract
Background Molecular epidemiology at the community level has an important guiding role in zoonotic disease control programmes where genetic markers are suitably variable to unravel the dynamics of local transmission. We evaluated the molecular diversity of Trypanosoma cruzi, the etiological agent of Chagas disease, in southern Ecuador (Loja Province). This kinetoplastid parasite has traditionally been a paradigm for clonal population structure in pathogenic organisms. However, the presence of naturally occurring hybrids, mitochondrial introgression, and evidence of genetic exchange in the laboratory question this dogma. Methodology/Principal Findings Eighty-one parasite isolates from domiciliary, peridomiciliary, and sylvatic triatomines and mammals were genotyped across 10 variable microsatellite loci. Two discrete parasite populations were defined: one predominantly composed of isolates from domestic and peridomestic foci, and another predominantly composed of isolates from sylvatic foci. Spatial genetic variation was absent from the former, suggesting rapid parasite dispersal across our study area. Furthermore, linkage equilibrium between loci, Hardy-Weinberg allele frequencies at individual loci, and a lack of repeated genotypes are indicative of frequent genetic exchange among individuals in the domestic/peridomestic population. Conclusions/Significance These data represent novel population-level evidence of an extant capacity for sex among natural cycles of T. cruzi transmission. As such they have dramatic implications for our understanding of the fundamental genetics of this parasite. Our data also elucidate local disease transmission, whereby passive anthropogenic domestic mammal and triatomine dispersal across our study area is likely to account for the rapid domestic/peridomestic spread of the parasite. Finally we discuss how this, and the observed subdivision between sympatric sylvatic and domestic/peridomestic foci, can inform efforts at Chagas disease control in Ecuador. Trypanosoma cruzi is transmitted by blood sucking insects known as triatomines. This protozoan parasite commonly infects wild and domestic mammals in South and Central America. However, triatomines also transmit the parasite to people, and human infection with T. cruzi is known as Chagas disease, a major public health concern in Latin America. Understanding the complex dynamics of parasite spread between wild and domestic environments is essential to design effective control measures to prevent the spread of Chagas disease. Here we describe T. cruzi genetic diversity and population dynamics in southern Ecuador. Our findings indicate that the parasite circulates in two largely independent cycles: one corresponding to the sylvatic environment and one related to the domestic/peridomestic environment. Furthermore, our data indicate that human activity might promote parasite dispersal among communties. This information is the key for the design of control programmes in Southern Ecuador. Finally, we have encountered evidence of a sexual reproductive mode in the domestic T. cruzi population, which constitutes a new and intriguing finding with regards to the biology of this parasite.
Collapse
Affiliation(s)
- Sofía Ocaña-Mayorga
- Centro de Investigación en Enfermedades Infecciosas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | | | | | | |
Collapse
|
28
|
González C, Ortiz S, Solari A. Colombian Trypanosoma cruzi major genotypes circulating in patients: Minicircle homologies by cross-hybridization analysis. Int J Parasitol 2010; 40:1685-92. [DOI: 10.1016/j.ijpara.2010.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/14/2010] [Accepted: 07/14/2010] [Indexed: 11/26/2022]
|
29
|
Ramírez JD, Guhl F, Rendón LM, Rosas F, Marin-Neto JA, Morillo CA. Chagas cardiomyopathy manifestations and Trypanosoma cruzi genotypes circulating in chronic Chagasic patients. PLoS Negl Trop Dis 2010; 4:e899. [PMID: 21152056 PMCID: PMC2994916 DOI: 10.1371/journal.pntd.0000899] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/29/2010] [Indexed: 11/18/2022] Open
Abstract
Chagas disease caused by Trypanosoma cruzi is a complex disease that is endemic and an important problem in public health in Latin America. The T. cruzi parasite is classified into six discrete taxonomic units (DTUs) based on the recently proposed nomenclature (TcI, TcII, TcIII, TcIV, TcV and TcVI). The discovery of genetic variability within TcI showed the presence of five genotypes (Ia, Ib, Ic, Id and Ie) related to the transmission cycle of Chagas disease. In Colombia, TcI is more prevalent but TcII has also been reported, as has mixed infection by both TcI and TcII in the same Chagasic patient. The objectives of this study were to determine the T. cruzi DTUs that are circulating in Colombian chronic Chagasic patients and to obtain more information about the molecular epidemiology of Chagas disease in Colombia. We also assessed the presence of electrocardiographic, radiologic and echocardiographic abnormalities with the purpose of correlating T. cruzi genetic variability and cardiac disease. Molecular characterization was performed in Colombian adult chronic Chagasic patients based on the intergenic region of the mini-exon gene, the 24Sα and 18S regions of rDNA and the variable region of satellite DNA, whereby the presence of T.cruzi I, II, III and IV was detected. In our population, mixed infections also occurred, with TcI-TcII, TcI-TcIII and TcI-TcIV, as well as the existence of the TcI genotypes showing the presence of genotypes Ia and Id. Patients infected with TcI demonstrated a higher prevalence of cardiac alterations than those infected with TcII. These results corroborate the predominance of TcI in Colombia and show the first report of TcIII and TcIV in Colombian Chagasic patients. Findings also indicate that Chagas cardiomyopathy manifestations are more correlated with TcI than with TcII in Colombia.
Collapse
Affiliation(s)
- Juan David Ramírez
- Centro de investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Felipe Guhl
- Centro de investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Lina María Rendón
- Centro de investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Fernando Rosas
- Electrofisiología, Clínica Abood Shaio, Bogotá, Colombia
| | - Jose A. Marin-Neto
- Cardiology Division, Internal Medicine Department, Medical School of Ribeirao Preto, Universidad de Sao Paulo, Sao Paulo, Brazil
| | - Carlos A. Morillo
- Department of Medicine, Cardiology Division, McMaster University, PHRI-HHSC, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Differentiation of Trypanosoma cruzi and Trypanosoma rangeli of Colombia using minicircle hybridization tests. Diagn Microbiol Infect Dis 2010; 68:265-70. [DOI: 10.1016/j.diagmicrobio.2010.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/21/2010] [Accepted: 06/28/2010] [Indexed: 11/19/2022]
|
31
|
Abstract
The majority of individuals in the chronic phase of Chagas disease are asymptomatic (indeterminate form, IF). Each year, approximately 3% of them develop lesions in the heart or gastrointestinal tract. Cardiomyopathy (CCHD) is the most severe manifestation of Chagas disease. The factors that determine the outcome of the infection are unknown, but certainly depend on complex interactions amongst the genetic make-up of the parasite, the host immunogenetic background and environment. In a previous study we verified that the maxicircle gene NADH dehydrogenase (mitochondrial complex I) subunit 7 (ND7) from IF isolates had a 455 bp deletion compared with the wild type (WT) ND7 gene from CCHD strains. We proposed that ND7 could constitute a valuable target for PCR assays in the differential diagnosis of the infective strain. In the present study we evaluated this hypothesis by examination of ND7 structure in parasites from 75 patients with defined pathologies, from Southeast Brazil. We also analysed the structure of additional mitochondrial genes (ND4/CR4, COIII and COII) since the maxicircle is used for clustering Trypanosoma cruzi strains into three clades/haplogroups. We conclude that maxicircle genes do not discriminate parasite populations which induce IF or CCHD forms. Interestingly, the great majority of the analysed isolates belong to T. cruzi II (discrete typing unit, (DTU) IIb) genotype. This scenario is at variance with the prevalence of hybrid (DTU IId) human isolates in Bolivia, Chile and Argentina. The distribution of WT and deleted ND7 and ND4 genes in T. cruzi strains suggests that mutations in the two genes occurred in different ancestrals in the T. cruzi II cluster, allowing the identification of at least three mitochondrial sub-lineages within this group. The observation that T. cruzi strains accumulate mutations in several genes coding for complex I subunits favours the hypothesis that complex I may have a limited activity in this parasite.
Collapse
|
32
|
Câmara ACJ, Varela-Freire AA, Valadares HMS, Macedo AM, D'Avila DA, Machado CR, Lages-Silva E, Chiari E, Galvão LMC. Genetic analyses of Trypanosoma cruzi isolates from naturally infected triatomines and humans in northeastern Brazil. Acta Trop 2010; 115:205-11. [PMID: 20303924 DOI: 10.1016/j.actatropica.2010.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 03/04/2010] [Accepted: 03/11/2010] [Indexed: 11/17/2022]
Abstract
Trypanosoma cruzi genetic diversity was investigated in 25 isolates (vectors and humans) from the semiarid zone of the State of Rio Grande do Norte, Brazil. Molecular markers (3' region of the 24Salpha rRNA; mitochondrial cytochrome oxidase subunit 2 (COII) gene; spliced leader intergenic region (SL-IR) gene; allelic size microsatellite polymorphism) identified 56% TcIII (100% Panstrongyluslutzi; 50% Triatomabrasiliensis); 40% TcII (91.7% humans; 50% T. brasiliensis) and 4% TcI (human). Microsatellite analysis revealed monoclonal and heterozygous patterns on one or more microsatellite loci in 64% of T. cruzi isolates (92.3% triatomines; 33.3% humans) and 36% putative polyclonal populations (66.7% humans; 7.7% triatomines) by loci SCLE10, SCLE11, TcTAT20, TcAAAT6, all belonging to TcII. Identical T. cruzi polyclonal profiles (88.9%) were detected, mostly from humans. The adaptative natural plasticity of TcII and TcIII and their potential for maintaining human infection in T. brasiliensis were confirmed. Intraspecific and phylogenetic T. cruzi diversity in the sylvatic and domestic transmission cycles in this specific region will provide exclusive control strategies.
Collapse
Affiliation(s)
- A C J Câmara
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bhattacharyya T, Brooks J, Yeo M, Carrasco HJ, Lewis MD, Llewellyn MS, Miles MA. Analysis of molecular diversity of the Trypanosoma cruzi trypomastigote small surface antigen reveals novel epitopes, evidence of positive selection and potential implications for lineage-specific serology. Int J Parasitol 2010; 40:921-8. [DOI: 10.1016/j.ijpara.2010.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/08/2010] [Accepted: 01/10/2010] [Indexed: 10/19/2022]
|
34
|
Alternative lifestyles: the population structure of Trypanosoma cruzi. Acta Trop 2010; 115:35-43. [PMID: 19695212 DOI: 10.1016/j.actatropica.2009.08.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/22/2009] [Accepted: 08/13/2009] [Indexed: 11/23/2022]
Abstract
The genetic palette from which the spectrum of variability in Trypanosoma cruzi has been drawn is astonishingly limited. In this review we address the roots of this unusual pedigree and the usefulness of various taxonomic markers in relation to the manifestation of clinical disease and the geographic distribution of the parasite. The circumstances leading to the population structure of the extant strains were dictated by the unusual and apparently exceedingly rare mode of genetic exchange employed in this species, that being the non-meiotic fusion of two diploid cells. Two-hybridization events have been postulated in the whole of the T. cruzi pedigree, the first of which yielded the four predominant nuclear genotypes. Hybridization may be a common occurrence among closely related strains of T. cruzi, but either infrequent or inefficient when two diverse strains attempt the process. Two of the genotypes define the parental lineages, while the other two are mosaics of the parental contributions distinguished from one another by polymorphisms accumulated after the separation of a common, homozygous hybrid progeny line. The greatest genetic complexity is seen in the result of the second fusion event between one of the original parental strains and a progeny strain. The second generation of progeny reveals the proximal consequences of fusion, maintaining widespread nuclear heterozygosity and the first examples of recombination between the genotypes involved in the second hybridization. If the genesis of the heterozygous progeny follows the same path as their predecessors, these lines will move toward homozygosity after having had the opportunity for recombination. Thus, the total number of alleles may increase to five in another few million years.
Collapse
|
35
|
Abad-Franch F, Santos WS, Schofield CJ. Research needs for Chagas disease prevention. Acta Trop 2010; 115:44-54. [PMID: 20227378 DOI: 10.1016/j.actatropica.2010.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/17/2010] [Accepted: 03/05/2010] [Indexed: 11/30/2022]
Abstract
We present an overview of the two main strategies for the primary (vector control) and secondary (patient care) prevention of Chagas disease (CD). We identify major advances, knowledge gaps, and key research needs in both areas. Improved specific chemotherapy, including more practical formulations (e.g., paediatric) or combinations of existing drugs, and a better understanding of pathogenesis, including the relative weights of parasite and host genetic makeup, are clearly needed. Regarding CD vectors, we find that only about 10-20% of published papers on triatomines deal directly with disease control. We pinpoint the pitfalls of the current consensus on triatomine systematics, particularly within the Triatomini, and suggest how some straightforward sampling and analytical strategies would improve research on vector ecology, naturally leading to sounder control-surveillance schemes. We conclude that sustained research on CD prevention is still crucial. In the past, it provided not only the know-how, but also the critical mass of scientists needed to foster and consolidate CD prevention programmes; in the future, both patient care and long-term vector control would nonetheless benefit from more sharply focused, problem-oriented research.
Collapse
Affiliation(s)
- Fernando Abad-Franch
- Instituto Leônidas e Maria Deane-Fiocruz Amazonia, Rua Teresina 476, 69057-070 Manaus, Amazonas, Brazil.
| | | | | |
Collapse
|
36
|
Chagasic megacolon associated with Trypanosoma cruzi I in a Colombian patient. Parasitol Res 2010; 107:439-42. [PMID: 20502919 DOI: 10.1007/s00436-010-1874-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
Chagasic megacolon has been reported in the southern cone countries of South America and is mainly associated with Trypanosoma cruzi II infection. Herein, we report the first case in Colombia of chagasic megacolon with cardiomyopathy associated with the T. cruzi I lineage. This finding suggests that in Colombia, as well as in other northern countries of South America and throughout Central America, where T. cruzi I is endemic, cardiomyopathy may not be the only clinical form of Chagas disease.
Collapse
|
37
|
Grosso NL, Bua J, Perrone AE, Gonzalez MN, Bustos PL, Postan M, Fichera LE. Trypanosoma cruzi: biological characterization of a isolate from an endemic area and its susceptibility to conventional drugs. Exp Parasitol 2010; 126:239-44. [PMID: 20493848 DOI: 10.1016/j.exppara.2010.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/27/2010] [Accepted: 05/16/2010] [Indexed: 11/17/2022]
Abstract
We describe some biological and molecular characteristics of a Trypanosoma cruzi isolate derived from a Triatomine captured in Nicaragua. PCR based typification showed that this isolate, named Nicaragua, belonged to the lineage Tc I. Nicaragua infected culture cells were treated with allopurinol, showing different behavior according to the cellular compartment, being cardiomyocyte primary cultures more resistant to this drug. The course of the infection in a mice experimental model and its susceptibility to benznidazole and allopurinol was analyzed. In benznidazole treatment, mice reverted the high lethal effect of parasites during the acute infection, however, a few parasites were detected in the heart of 88% of mice 1 year post-infection. Since T. cruzi is a heterogeneous species population it is important to study and characterize different parasites actually circulating in humans in endemic areas. In this work we show that T. cruzi Nicaragua isolate, is sensitive to early benznidazole treatment.
Collapse
Affiliation(s)
- Noelia L Grosso
- Instituto Nacional de Parasitología, Dr. M. Fatala Chaben, ANLIS C.G. Malbrán, Paseo Colón 568, Ciudad de Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
38
|
Mantilla JC, Zafra GA, Macedo AM, González CI. Mixed infection of Trypanosoma cruzi I and II in a Colombian cardiomyopathic patient. Hum Pathol 2010; 41:610-3. [DOI: 10.1016/j.humpath.2009.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 10/19/2022]
|
39
|
Evaluation of adult chronic Chagas' heart disease diagnosis by molecular and serological methods. J Clin Microbiol 2009; 47:3945-51. [PMID: 19846646 DOI: 10.1128/jcm.01601-09] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chagas' disease caused by Trypanosoma cruzi is endemic in Latin America. T. cruzi presents heterogeneous populations and comprises two main genetic lineages, named T. cruzi I and T. cruzi II. Diagnosis in the chronic phase is based on conventional serological tests, including indirect immunofluorescence (IIF) and enzyme-linked immunosorbent assay (ELISA), and diagnosis in the acute phase based on parasitological methods, including hemoculture. The objective of this study was to evaluate the diagnostic procedures of Chagas' disease in adult patients in the chronic phase by using a PCR assay and conventional serological tests, including TESA-blot as the gold standard. Samples were obtained from 240 clinical chronic chagasic patients. The sensitivities, compared to that of TESA-blot, were 70% for PCR using the kinetoplast region, 75% for PCR using the nuclear repetitive region, 99% for IIF, and 95% for ELISA. According to the serological tests results, we recommend that researchers assess the reliability and sensitivity of the commercial kit Chagatest ELISA recombinant, version 3.0 (Chagatest Rec v3.0; Wiener Lab, Rosario, Argentina), due to the lack of sensitivity. Based on our analysis, we concluded that PCR cannot be validated as a conventional diagnostic technique for Chagas' disease. These data have been corroborated by low levels of concordance with serology test results. It is recommended that PCR be used only for alternative diagnostic support. Using the nuclear repetitive region of T. cruzi, PCR could also be applicable for monitoring patients receiving etiologic treatment.
Collapse
|
40
|
D'Avila DA, Macedo AM, Valadares HMS, Gontijo ED, de Castro AM, Machado CR, Chiari E, Galvão LMC. Probing population dynamics of Trypanosoma cruzi during progression of the chronic phase in chagasic patients. J Clin Microbiol 2009; 47:1718-25. [PMID: 19357212 PMCID: PMC2691080 DOI: 10.1128/jcm.01658-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/01/2008] [Accepted: 03/18/2009] [Indexed: 11/20/2022] Open
Abstract
Our research aimed to characterize the genetic profiles of 102 Trypanosoma cruzi isolates recently obtained from 44 chronic chagasic patients from different regions of the states of Minas Gerais and Goiás in Brazil. At least two isolates were obtained from each patient at different times in order to study the parasite population dynamics during disease progression in the chronic phase. The isolates were characterized molecularly by genotyping the 3' region of the 24S alpha rRNA, the mitochondrial cytochrome oxidase subunit 2 (COII) gene, and the intergenic region of the spliced leader intergenic region (SL-IR) gene. Seventy-seven isolates were analyzed for nine microsatellite loci. The data presented here show a strong correlation between the T. cruzi lineage II (T. cruzi II) and human infection in these regions of Brazil. Interestingly, isolates from two patients were initially characterized (by rRNA genotyping) as T. cruzi I and hybrid strains, but subsequent analyses of the COII and SL-IR genes confirmed that those isolates belonged to T. cruzi III and a hybrid group, respectively. Our results confirm the risk of misclassifying T. cruzi isolates on the basis of analysis of a single molecular marker. The microsatellite profiles showed that different isolates obtained from the same patient were genetically identical and monoclonal. Exceptions were observed for T. cruzi isolates from two patients who presented differences for the SCLE11 locus and also from two other patients who showed amplification of three peaks for a microsatellite locus (TcAAAT6), implying that they were multiclonal. On the basis of the findings of the studies described here, we were not able to establish a correlation between the clinical forms of Chagas' disease and the genetic profiles of the T. cruzi isolates.
Collapse
Affiliation(s)
- Daniella Alchaar D'Avila
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 Caixa Postal 486, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Noireau F, Diosque P, Jansen AM. Trypanosoma cruzi: adaptation to its vectors and its hosts. Vet Res 2009; 40:26. [PMID: 19250627 PMCID: PMC2695024 DOI: 10.1051/vetres/2009009] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 02/26/2009] [Indexed: 12/19/2022] Open
Abstract
American trypanosomiasis is a parasitic zoonosis that occurs throughout Latin America. The etiological agent, Trypanosoma cruzi, is able to infect almost all tissues of its mammalian hosts and spreads in the environment in multifarious transmission cycles that may or not be connected. This biological plasticity, which is probably the result of the considerable heterogeneity of the taxon, exemplifies a successful adaptation of a parasite resulting in distinct outcomes of infection and a complex epidemiological pattern. In the 1990s, most endemic countries strengthened national control programs to interrupt the transmission of this parasite to humans. However, many obstacles remain to the effective control of the disease. Current knowledge of the different components involved in elaborate system that is American trypanosomiasis (the protozoan parasite T. cruzi, vectors Triatominae and the many reservoirs of infection), as well as the interactions existing within the system, is still incomplete. The Triatominae probably evolve from predatory reduvids in response to the availability of vertebrate food source. However, the basic mechanisms of adaptation of some of them to artificial ecotopes remain poorly understood. Nevertheless, these adaptations seem to be associated with a behavioral plasticity, a reduction in the genetic repertoire and increasing developmental instability.
Collapse
Affiliation(s)
- François Noireau
- UR 016, Institut de Recherche pour le Développement (IRD), Montpellier, France.
| | | | | |
Collapse
|
42
|
Mejía-Jaramillo AM, Peña VH, Triana-Chávez O. Trypanosoma cruzi: Biological characterization of lineages I and II supports the predominance of lineage I in Colombia. Exp Parasitol 2009; 121:83-91. [DOI: 10.1016/j.exppara.2008.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 09/10/2008] [Accepted: 10/01/2008] [Indexed: 11/29/2022]
|
43
|
Téllez-Meneses J, Mejía-Jaramillo AM, Triana-Chávez O. Biological characterization of Trypanosoma cruzi stocks from domestic and sylvatic vectors in Sierra Nevada of Santa Marta, Colombia. Acta Trop 2008; 108:26-34. [PMID: 18804443 DOI: 10.1016/j.actatropica.2008.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 08/12/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
Sierra Nevada of Santa Marta is one of the most endemic regions of Chagas disease in Colombia. In this study, we compared the biological behavior and genetic features of Trypanosoma cruzi stocks that were isolated from domestic and sylvatic insects in this area. Rhodnius prolixus (from domestic environments) and Triatoma dimidiata (from sylvatic, peridomestic and domestic environments) are the most important vectors in this region. Genetic characterization showed that all stocks corresponded to T. cruzi I, but LSSP-PCR analyses indicated that some genotypes were present in both environments. Biological characterization in vitro showed a low growth rate in sylvatic T. cruzi stocks and in some domestic T. cruzi stocks, possibly indicating the presence of stocks with similar behavior in both transmission cycles. In parallel, in vivo behavioral analysis also indicated that T. cruzi stocks are variable and this species did not show a correlation between the environments where they were isolated. In addition, all stocks demonstrated a low mortality rate and histopathological lesions in heart, skeletal muscle and colon tissue. Moreover, our data indicated that experimentally infected chagasic mice displayed a relation between their myocardial inflammation intensity, parasitism tissue and parasite load using the qPCR. In conclusion, our results indicate that the T. cruzi stocks present in SNSM have similar biological behavior and do not show a correlation with the different transmission cycles. This could be explained by the complex transmission dynamics of T. cruzi in Sierra Nevada of Santa Marta, where hosts, vectors (e.g., T. dimidiata) and reservoirs circulate in both environments due to the close contact between the two transmission cycles, favoring environment overlapping. This knowledge is an important key to understanding the epidemiology and pathology of Chagas disease in this Colombian region. Furthermore, our findings could be of significant use in the design of control strategies restricted to a specified endemic region.
Collapse
|