1
|
Shang M, Xie Z, Tang Z, He L, Wang X, Wang C, Wu Y, Li Y, Zhao L, Lv Z, Wu Z, Huang Y, Yu X, Li X. Expression of Clonorchis sinensis GIIIsPLA 2 protein in baculovirus-infected insect cells and its overexpression facilitating epithelial-mesenchymal transition in Huh7 cells via AKT pathway. Parasitol Res 2017; 116:1307-1316. [PMID: 28220242 DOI: 10.1007/s00436-017-5409-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/12/2017] [Indexed: 12/29/2022]
Abstract
Although prior studies confirmed that group III secretory phospholipase A2 of Clonorchis sinensis (CsGIIIsPLA2) had stimulating effect on liver fibrosis by binding to LX-2 cells, large-scale expression of recombinant protein and its function in the progression of hepatoma are worth exploring. Because of high productivity and low lipopolysaccharides (LPS) in the Sf9-baculovirus expression system, we firstly used this system to express the coding region of CsGIIIsPLA2. The molecular weight of recombinant CsGIIIsPLA2 protein was about 34 kDa. Further investigation showed that most of the recombinant protein presented intracellular expression in Sf9 insect cell nucleus and could be detected only into cell debris, which made the protein purification and further functional study difficult. Therefore, to study the role of CsGIIIsPLA2 in hepatocellular carcinoma (HCC) progression, CsGIIIsPLA2 overexpression Huh7 cell model was applied. Cell proliferation, migration, and the expression level of epithelial-mesenchymal transition (EMT)-related molecules (E-cadherin, N-cadherin, α-catenin, Vimentin, p300, Snail, and Slug) along with possible mechanism were measured. The results indicated that CsGIIIsPLA2 overexpression not only inhibited cell proliferation and promoted migration and EMT but also enhanced the phosphorylation of AKT in HCC cells. In conclusion, this study supported that CsGIIIsPLA2 overexpression suppressed cell proliferation and induced EMT through the AKT pathway.
Collapse
Affiliation(s)
- Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Zhizhi Xie
- Department of Clinical Laboratory, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Lei He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Department of Clinical Laboratory, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, 510060, People's Republic of China
| | - Xiaoyun Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Caiqin Wang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Ye Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China. .,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
2
|
Hong ST, Fang Y. Clonorchis sinensis and clonorchiasis, an update. Parasitol Int 2011; 61:17-24. [PMID: 21741496 DOI: 10.1016/j.parint.2011.06.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/08/2011] [Accepted: 06/11/2011] [Indexed: 01/16/2023]
Abstract
Clonorchis sinensis is the most common human liver fluke in East Asia. Several studies proved its carcinogenesis in humans and it was reclassified as a group 1 biological carcinogen in 2009. It is still actively transmitted in endemic areas of Korea, China, Russia, and Vietnam. Currently it is estimated that more than 200 million people are at risk of infection, 15-20 million people are infected and 1.5-2 million show symptoms or complications. Several molecules and genes of the fluke have been identified and characterized. Studies on its oncogenesis and omics-based findings have been especially encouraging. Diagnosis of its infection depends mainly on detection of eggs in feces but other methods have been developed. ELISA using crude extract antigen is now popular for its diagnosis. Diagnosis by detecting DNAs from eggs in feces has been developed using PCR, real-time PCR, and LAMP, which have been found sensitive and specific. Imaging diagnosis has been studied in depth and is widely used. Any evidence of clonorchiasis, such as eggs, DNAs, or images, may lead to recommendations of chemotherapy in endemic areas. Praziquantel is the major chemotherapeutic agent for clonorchiasis and recently tribendimidine was found effective and is now under investigation as a promising chemotherapeutic alternative. Sustainable control programs which include mass chemotherapy with praziquantel and education for prevention of re-infection may reduce its morbidity and eliminate its infections in endemic areas.
Collapse
Affiliation(s)
- Sung-Tae Hong
- Department of Parasitology and Tropical Medicine, Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| | | |
Collapse
|
3
|
Proteomic analysis of excretory secretory products from Clonorchis sinensis adult worms: molecular characterization and serological reactivity of a excretory-secretory antigen-fructose-1,6-bisphosphatase. Parasitol Res 2011; 109:737-44. [PMID: 21424807 DOI: 10.1007/s00436-011-2316-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 02/23/2011] [Indexed: 01/29/2023]
Abstract
Clonorchis sinensis is a food-borne zoonotic parasite that resides in bile ducts and causes clonorchiasis, which may result in cholelithiasis, cholecystitis, hepatic fibrosis, and liver tumors. Although total excretory secretory products (ESP) of C. sinensis adults induce hepatic fibrosis in vivo in rats, the causative mechanism is not well understood. To study components of the ESP, C. sinensis culture medium was collected and analyzed using shotgun LC-MS/MS. We identified a total of 110 proteins, including glycometabolic enzymes (such as fructose-1,6-bisphosphatase (FBPase) and enolase), detoxification enzymes (such as glutamate dehydrogenase, dihydrolipoamide dehydrogenase and cathepsin B endopeptidase), and a number of RAB family proteins. To identify a potential causative agent for hepatic fibrosis, we expressed and purified a recombinant FBPase, a 1,041-bp gene product that encodes a 41.7-kDa protein with prototypical FBPase domains and that can form a tetramer with a molecular mass of 166.8 kDa. In addition, we found that FBPase is an antigen present in the ESP and in circulation. Immunofluorescence showed that FBPase localizes to the intestinal cecum and vitellarium in C. sinensis adults. Our results describe the components of the excretory secretory products from C. sinensis adult worms and suggest that FBPase may be an important antigen present in the ESP of C. sinensis and may lay the foundation for additional studies on the development of clonorchiasis-associated hepatic fibrosis.
Collapse
|
5
|
Hu D, Wu J, Hu F, Yang Y, Liang C, Chen J, Wang L, Wang P, Wang X, Xu J, Hu X, Yu X. Stage and tissue specific differences in SjBMI1, a Polycomb protein in Schistosoma japonicum. Parasitol Res 2010; 106:677-82. [PMID: 20098996 DOI: 10.1007/s00436-010-1734-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/04/2010] [Indexed: 12/16/2022]
Abstract
Polycomb group protein BMI1, plays a central role in the stem cell pluripotency and development in metazoans. A gene encoding BMI1 homologue in the Schistosoma japonicum (SjBMI1) was cloned and identified. The deduced amino acid sequence shows high identity to the homologues from Schistosoma mansoni and Homo sapiens. Quantitative real time polymerase chain reaction (RT-PCR) and Western blot analysis revealed that the SjBMI1 is highly expressed in adult worms and eggs, not in cercariae. By immunofluorescent studies, SjBMI1 was localized to testes, ovaries of mixed sex infected adult worms, but not of single sex infected adult worms. The study reveals the SjBMI1 expression profile in developmental stages and localization characteristic and provides a clue that it may be associated with reproductive development of S. japonicum.
Collapse
Affiliation(s)
- Dong Hu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|