1
|
Cruz-Saavedra L, Muñoz M, Patiño LH, Vallejo GA, Guhl F, Ramírez JD. Slight temperature changes cause rapid transcriptomic responses in Trypanosoma cruzi metacyclic trypomastigotes. Parasit Vectors 2020; 13:255. [PMID: 32410662 PMCID: PMC7226949 DOI: 10.1186/s13071-020-04125-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Abstract
Background Severe changes in temperature can affect the behavior and ecology of some infectious agents. Trypanosoma cruzi is a protozoan that causes Chagas disease. This parasite has high genetic variability and can be divided into six discrete typing units (DTUs). Trypanosoma cruzi also has a complex life-cycle, which includes the process of metacyclogenesis when non-infective epimastigote forms are differentiated into infective metacyclic trypomastigotes (MT). Studies in triatomines have shown that changes in temperature also affect the number and viability of MT. Methods The objective of this study was to evaluate how temperature affects the transcriptional profiles of T. cruzi I and II (TcI and TcII) MT by exposing parasites to two temperatures (27 °C and 28 °C) and comparing those to normal culture conditions at 26 °C. Subsequently, RNA-seq was conducted and differentially expressed genes were quantified and associated to metabolic pathways. Results A statistically significant difference was observed in the number of MT between the temperatures evaluated and the control, TcII DTU was not strongly affected to exposure to high temperatures compared to TcI. Similar results were found when we analyzed gene expression in this DTU, with the greatest number of differentially expressed genes being observed at 28 °C, which could indicate a dysregulation of different signaling pathways under this temperature. Chromosome analysis indicated that chromosome 1 harbored the highest number of changes for both DTUs for all thermal treatments. Finally, gene ontology (GO) analyses showed a decrease in the coding RNAs involved in the regulation of processes related to the metabolism of lipids and carbohydrates, the evasion of oxidative stress, and proteolysis and phosphorylation processes, and a decrease in RNAs coding to ribosomal proteins in TcI and TcII, along with an increase in the expression of surface metalloprotease GP63 in TcII. Conclusions Slight temperature shifts lead to increased cell death of metacyclic trypomastigotes because of the deregulation of gene expression of different processes essential for the TcI and TcII DTUs of T. cruzi.![]()
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Gustavo A Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Felipe Guhl
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Facultad de Ciencias, Universidad de Los Andes, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
2
|
San Francisco J, Barría I, Gutiérrez B, Neira I, Muñoz C, Sagua H, Araya JE, Andrade JC, Zailberger A, Catalán A, Remonsellez F, Vega JL, González J. Decreased cruzipain and gp85/trans-sialidase family protein expression contributes to loss of Trypanosoma cruzi trypomastigote virulence. Microbes Infect 2016; 19:55-61. [PMID: 27553285 DOI: 10.1016/j.micinf.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
Two cell lines derived from a single Trypanosoma cruzi clone by long-term passaging generated a highly virulent (C8C3hvir) and a low virulent (C8C3lvir) cell line. The C8C3hvir cell line was highly infective and lethal to Balb/c mice, and the C8C3lvir cell line was three- to five-fold less infective to mouse cardiomyocytes than C8C3hvir. The highly virulent T. cruzi cell line abundantly expressed the major cysteine proteinase cruzipain (Czp), complement regulatory protein (CRP) and trans-sialidase (TS), all of which are known to act as virulence factors in this parasite. The in vitro invasion capacity and in vivo Balb/c mouse infectiveness of the highly virulent strain was strongly reduced by pre-treatment with antisense oligonucleotides targeting TS or CRP or with E64d. Based on these results, we conclude that decreased levels of TS, CRP and Czp expression could contribute to loss of T. cruzi trypomastigote virulence.
Collapse
Affiliation(s)
- Juan San Francisco
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Iván Barría
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, University of Antofagasta, Antofagasta, Chile
| | - Bessy Gutiérrez
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Iván Neira
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Christian Muñoz
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Hernán Sagua
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Jorge E Araya
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Juan Carlos Andrade
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | | | - Alejandro Catalán
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile
| | - Francisco Remonsellez
- Applied Microbiology and Extremophiles Laboratory, Chemical Engineering Department, North Catholic University, Antofagasta, Chile
| | - José Luis Vega
- Experimental Physiology Laboratory (EPhyL), Antofagasta Institute, University of Antofagasta, Antofagasta, Chile
| | - Jorge González
- Molecular Parasitology Unit, Medical Technology Department, University of Antofagasta, Antofagasta, Chile.
| |
Collapse
|
3
|
Bellera CL, Balcazar DE, Vanrell MC, Casassa AF, Palestro PH, Gavernet L, Labriola CA, Gálvez J, Bruno-Blanch LE, Romano PS, Carrillo C, Talevi A. Computer-guided drug repurposing: Identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur J Med Chem 2015; 93:338-48. [DOI: 10.1016/j.ejmech.2015.01.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/28/2015] [Indexed: 01/31/2023]
|
4
|
Decoding the anti-Trypanosoma cruzi action of HIV peptidase inhibitors using epimastigotes as a model. PLoS One 2014; 9:e113957. [PMID: 25464510 PMCID: PMC4252066 DOI: 10.1371/journal.pone.0113957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/01/2014] [Indexed: 12/21/2022] Open
Abstract
Background Aspartic peptidase inhibitors have shown antimicrobial action against distinct microorganisms. Due to an increase in the occurrence of Chagas' disease/AIDS co-infection, we decided to explore the effects of HIV aspartic peptidase inhibitors (HIV-PIs) on Trypanosoma cruzi, the etiologic agent of Chagas' disease. Methodology and Principal Findings HIV-PIs presented an anti-proliferative action on epimastigotes of T. cruzi clone Dm28c, with IC50 values ranging from 0.6 to 14 µM. The most effective inhibitors, ritonavir, lopinavir and nelfinavir, also had an anti-proliferative effect against different phylogenetic T. cruzi strains. The HIV-PIs induced some morphological alterations in clone Dm28c epimastigotes, as reduced cell size and swollen of the cellular body. Transmission electron microscopy revealed that the flagellar membrane, mitochondrion and reservosomes are the main targets of HIV-PIs in T. cruzi epimastigotes. Curiously, an increase in the epimastigote-into-trypomastigote differentiation process of clone Dm28c was observed, with many of these parasites presenting morphological alterations including the detachment of flagellum from the cell body. The pre-treatment with the most effective HIV-PIs drastically reduced the interaction process between epimastigotes and the invertebrate vector Rhodnius prolixus. It was also noted that HIV-PIs induced an increase in the expression of gp63-like and calpain-related molecules, and decreased the cruzipain expression in epimastigotes as judged by flow cytometry and immunoblotting assays. The hydrolysis of a cathepsin D fluorogenic substrate was inhibited by all HIV-PIs in a dose-dependent manner, showing that the aspartic peptidase could be a possible target to these drugs. Additionally, we verified that ritonavir, lopinavir and nelfinavir reduced drastically the viability of clone Dm28c trypomastigotes, causing many morphological damages. Conclusions and Significance The results contribute to understand the possible role of aspartic peptidases in T. cruzi physiology, adding new in vitro insights into the possibility of exploiting the use of HIV-PIs in the clinically relevant forms of the parasite.
Collapse
|
5
|
Santos LO, Garcia-Gomes AS, Catanho M, Sodre CL, Santos ALS, Branquinha MH, d'Avila-Levy CM. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy. Curr Med Chem 2014; 20:3116-33. [PMID: 23298141 PMCID: PMC3837538 DOI: 10.2174/0929867311320250007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/27/2012] [Indexed: 12/13/2022]
Abstract
Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in trypanosomatid cells and aspartic proteolytic inhibitors can be benefic chemotherapeutic agents against these human pathogenic microorganisms.
Collapse
Affiliation(s)
- L O Santos
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz-IOC, Fundação Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
6
|
Trypanosoma cruzi heparin-binding proteins present a flagellar membrane localization and serine proteinase activity. Parasitology 2012; 140:171-80. [DOI: 10.1017/s0031182012001448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARYHeparin-binding proteins (HBPs) play a key role in Trypanosoma cruzi-host cell interactions. HBPs recognize heparan sulfate (HS) at the host cell surface and are able to induce the cytoadherence and invasion of this parasite. Herein, we analysed the biochemical properties of the HBPs and also evaluated the expression and subcellular localization of HBPs in T. cruzi trypomastigotes. A flow cytometry analysis revealed that HBPs are highly expressed at the surface of trypomastigotes, and their peculiar localization mainly at the flagellar membrane, which is known as an important signalling domain, may enhance their binding to HS and elicit the parasite invasion. The plasmon surface resonance results demonstrated the stability of HBPs and their affinity to HS and heparin. Additionally, gelatinolytic activities of 70 kDa, 65·8 kDa and 59 kDa HBPs over a broad pH range (5·5–8·0) were revealed using a zymography assay. These proteolytic activities were sensitive to serine proteinase inhibitors, such as aprotinin and phenylmethylsulfonyl fluoride, suggesting that HBPs have the properties of trypsin-like proteinases.
Collapse
|
7
|
Repertoire, genealogy and genomic organization of cruzipain and homologous genes in Trypanosoma cruzi, T. cruzi-like and other trypanosome species. PLoS One 2012; 7:e38385. [PMID: 22685565 PMCID: PMC3369871 DOI: 10.1371/journal.pone.0038385] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/04/2012] [Indexed: 12/29/2022] Open
Abstract
Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches.
Collapse
|
8
|
Hernández R, Cevallos AM, Nepomuceno-Mejía T, López-Villaseñor I. Stationary phase in Trypanosoma cruzi epimastigotes as a preadaptive stage for metacyclogenesis. Parasitol Res 2012; 111:509-14. [PMID: 22648053 DOI: 10.1007/s00436-012-2974-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/17/2012] [Indexed: 11/24/2022]
Abstract
Trypanosoma cruzi is a species of parasitic protozoa that causes American trypanosomiasis or Chagas disease. These parasites go through a complex life cycle in Triatominae insects and vertebrate hosts. Epimastigotes are replicative forms that colonize the digestive tract of the vector and can be cultured in axenic media. The growth curve of epimastigotes allows assessment of differences in cells undergoing growth rate transitions from an exponential growth to a stationary phase. Since the classical descriptions of T. cruzi, it has been noted that the growth curve of epimastigotes in culture can give rise, in the stationary phase, to nonreplicating forms of metacyclic trypomastigotes. Metacyclogenesis therefore regards to the development process by which epimastigote transform into infective metacyclic trypomastigotes. In nature, these metacyclic forms allow the spread of Chagas disease when transmitted from an infected vector to a vertebrate host. This work reviews cellular phenomena that occur during the growth rate transitions of epimastigotes in culture, which may be related to very early physiological conditions for metacyclogenesis. Many of these events have not been thoroughly investigated. Their analysis can stimulate new hypotheses and future research in an important area not fully exploited.
Collapse
Affiliation(s)
- Roberto Hernández
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad Universitaria, 04510 México DF, Mexico.
| | | | | | | |
Collapse
|
9
|
Sangenito LS, Gonçalves KC, Abi-chacra ÉA, Sodré CL, d’Avila-Levy CM, Branquinha MH, Santos ALS. Multiple effects of pepstatin A on Trypanosoma cruzi epimastigote forms. Parasitol Res 2011; 110:2533-40. [DOI: 10.1007/s00436-011-2796-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
|
10
|
Goldenberg S, Ávila AR. Aspects of Trypanosoma cruzi stage differentiation. ADVANCES IN PARASITOLOGY 2011; 75:285-305. [PMID: 21820561 DOI: 10.1016/b978-0-12-385863-4.00013-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Trypanosoma cruzi alternates between different morphological and functional types during its life cycle. Since the discovery of this parasite at the beginning of the twentieth century, efforts have been made to determine the basis of its pathogenesis in the course of Chagas disease and its biochemical constituents. There has also been work to develop tools and strategies for prophylaxis of the important disease caused by these parasites which affects millions of people in Latin America. The identification of axenic conditions allowing T. cruzi growth and differentiation has led to the identification and characterization of stage-specific antigens as well as a better characterization of the biological properties and biochemical particularities of each individual developmental stage. The recent availability of genomic data should pave the way to new progress in our knowledge of the biology and pathogenesis of T. cruzi. This review addresses the differentiation and major stage-specific antigens of T. cruzi and attempts to describe the complexity of the parasite and of the disease it causes.
Collapse
|