1
|
Paramasivam D, Balasubramanian B, Suresh R, Kumaravelu J, Vellingiri MM, Liu WC, Meyyazhagan A, Alanazi AM, Rengasamy KRR, Arumugam VA. One-Pot Synthesis of Silver Nanoparticles Derived from Aqueous Leaf Extract of Ageratum conyzoides and Their Biological Efficacy. Antibiotics (Basel) 2023; 12:688. [PMID: 37107050 PMCID: PMC10135330 DOI: 10.3390/antibiotics12040688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The main objective of the present research work is to assess the biological properties of the aqueous plant extract (ACAE) synthesised silver nanoparticles from the herbal plant Ageratum conyzoides, and their biological applications. The silver nanoparticle syntheses from Ageratum conyzoides (Ac-AgNPs) were optimised with different parameters, such as pH (2, 4, 6, 8 and 10) and varied silver nitrate concentration (1 mM and 5 mM). Based on the UV-vis spectroscopy analysis of the synthesised silver nanoparticles, the concentration of 5 mM with the pH at 8 was recorded as the peak reduction at 400 nm; and these conditions were optimized were used for further studies. The results of the FE-SEM analysis recorded the size ranges (~30-90 nm), and irregular spherical and triangular shapes of the AC-AgNPs were captured. The characterization reports of the HR-TEM investigation of AC-AgNPs were also in line with the FE-SEM studies. The antibacterial efficacies of AC-AgNPs have revealed the maximum zone of inhibition against S. typhi to be within 20 mm. The in vitro antiplasmodial activity of AC-AgNPs is shown to have an effective antiplasmodial property (IC50:17.65 μg/mL), whereas AgNO3 has shown a minimum level of IC50: value 68.03 μg/mL, and the Ac-AE showed >100 μg/mL at 24 h of parasitaemia suppression. The α-amylase inhibitory properties of AC-AgNPs have revealed a maximum inhibition similar to the control Acarbose (IC50: 10.87 μg/mL). The antioxidant activity of the AC-AgNPs have revealed a better property (87.86% ± 0.56, 85.95% ± 1.02 and 90.11 ± 0.29%) when compared with the Ac-AE and standard in all the three different tests, such as DPPH, FRAP and H2O2 scavenging assay, respectively. The current research work might be a baseline for the future drug expansion process in the area of nano-drug design, and its applications also has a lot of economic viability and is a safer method in synthesising or producing silver nanoparticles.
Collapse
Affiliation(s)
- Deepak Paramasivam
- Department of Life Science, Kristu Jayanti College (Autonomous), Affiliated to Bengaluru North University, Bengaluru 560077, Karnataka, India
| | | | - Ramya Suresh
- PG and Research Department of Biotechnology, Dr. N.G.P. Arts and Science College, Autonomous and Affiliated to Bharathiar University, Coimbatore 641048, Tamil Nadu, India
| | - Jayanthi Kumaravelu
- Department of Microbiology and Biotechnology, Bharth Institute of Higher Education and Research, Agharam Road Selaiyur, Chennai 600073, Tamil Nadu, India
| | - Manon Mani Vellingiri
- Department of Biotechnology, Rathnavel Subramaniam College of Arts and Science, Coimbatore 641402, Tamil Nadu, India
| | - Wen-Chao Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru 560076, Karnataka, India
| | - Amer M. Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kannan R. R. Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, Tamil Nadu, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
2
|
Aly SH, Elissawy AM, Salah D, Alfuhaid NA, Zyaan OH, Mohamed HI, Singab ANB, Farag SM. Phytochemical Investigation of Three Cystoseira Species and Their Larvicidal Activity Supported with In Silico Studies. Mar Drugs 2023; 21:md21020117. [PMID: 36827158 PMCID: PMC9967941 DOI: 10.3390/md21020117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Culex pipiens mosquitoes are transmitters of many viruses and are associated with the transmission of many diseases, such as filariasis and avian malaria, that have a high rate of mortality. The current study draws attention to the larvicidal efficacy of three methanolic algal extracts, Cystoseira myrica, C. trinodis, and C. tamariscifolia, against the third larval instar of Cx. pipiens. The UPLC-ESI-MS analysis of three methanol fractions of algal samples led to the tentative characterization of twelve compounds with different percentages among the three samples belonging to phenolics and terpenoids. Probit analysis was used to calculate the lethal concentrations (LC50 and LC90). The highest level of toxicity was attained after treatment with C. myrica extract using a lethal concentration 50 (LC50) of 105.06 ppm, followed by C. trinodis (135.08 ppm), and the lowest level of toxicity was achieved by C. tamariscifolia (138.71 ppm) after 24 h. The elevation of glutathione-S-transferase (GST) and reduction of acetylcholine esterase (AChE) enzymes confirm the larvicidal activity of the three algal extracts. When compared to untreated larvae, all evaluated extracts revealed a significant reduction in protein, lipid, and carbohydrate contents, verifying their larvicidal effectiveness. To further support the observed activity, an in silico study for the identified compounds was carried out on the two tested enzymes. Results showed that the identified compounds and the tested enzymes had excellent binding affinities for each other. Overall, the current work suggests that the three algal extractions are a prospective source for the development of innovative, environmentally friendly larvicides.
Collapse
Affiliation(s)
- Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
- Correspondence: (S.H.A.); (A.N.B.S.)
| | - Ahmed M. Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Centre of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Dina Salah
- Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Nawal Abdulaziz Alfuhaid
- Department of Biology, College of Science and Humanities in Al-kharj, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Ola H. Zyaan
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Hany I. Mohamed
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Abdel Nasser B. Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Centre of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (S.H.A.); (A.N.B.S.)
| | - Shaimaa M. Farag
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
3
|
Budiyanto F, Ghandourah MA, Bawakid NO, Alorfi HS, Abdel-Lateff A, Alarif WM. Threat and gain: The metabolites of the red algae genus Acanthophora. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
4
|
Abdel Haleem DR, El Tablawy NH, Ahmed Alkeridis L, Sayed S, Saad AM, El-Saadony MT, Farag SM. Screening and evaluation of different algal extracts and prospects for controlling the disease vector mosquito Culex pipiens L. Saudi J Biol Sci 2022; 29:933-940. [PMID: 35197761 PMCID: PMC8848025 DOI: 10.1016/j.sjbs.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
Continual application of synthetic insecticides in controlling mosquito larvae has resulted in several problems as build-up of mosquito resistance beside to negative impacts on human health and environment. Discovering new and affordable bio-insecticidal agents with high efficiency, cost effective and target specific become a crucial need. The current study assessed the larvicidal activity of eight methanolic algal extracts belong to three different algal divisions against the 3rd larval instar of Culex pipiens L. (Diptera: Culicidae). Comparative studies showed that four species of red and green algal extracts exhibited good larvicidal activity. Galaxaura elongata and Jania rubens (Rhodophyta), Codium tomentosum and Ulva intestinales (Chlorophyta) showed higher larvicidal potencies than Padina boryana, Dictyota dichotoma, and Sargassum dentifolium (Phaeophyta) and Gelidium latifolium (Rhodophyta). The maximum level of toxicity was achieved by exposure to G. elongata extract with LC50 (31.13 ppm), followed by C. tomentosum (69.85 ppm) then J. rubens (84.82 ppm) and U. intestinalis (97.54 ppm), while the lowest toxicity exhibited by G. latifolium (297.38 ppm) at 72 h post- treatment. The application of LC50 values of G. elongate, J. rubens, C. tomentosum, and U. intestinalis extracts affected the activities of antioxidant enzymes viz. superoxide dismutase, catalase and glutathione peroxidase as oxidative stress markers. An increase of antioxidant enzymes activities was recorded. Therefore, a significant elimination of free radicals, causing toxic effects. Overall, this study casts light on the insecticidal activity of some algal extracts, suggesting the possibility of application of these bio- agents as novel and cost- effective larvicides.
Collapse
Affiliation(s)
- Doaa R. Abdel Haleem
- Department of Entomology, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
- Corresponding authors.
| | - Neamat H. El Tablawy
- Department of Botany, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| | - Lamya Ahmed Alkeridis
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
- Corresponding authors.
| | - Shaimaa M. Farag
- Department of Entomology, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
| |
Collapse
|
5
|
Souza CRM, Bezerra WP, Souto JT. Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Mar Drugs 2020; 18:md18030147. [PMID: 32121638 PMCID: PMC7142576 DOI: 10.3390/md18030147] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Alkaloids are nitrogenous compounds with various biological activities. Alkaloids with anti-inflammatory activity are commonly found in terrestrial plants, but there are few records of the identification and characterization of the activity of these compounds in marine organisms such as fungi, bacteria, sponges, ascidians, and cnidarians. Seaweed are a source of several already elucidated bioactive compounds, but few studies have described and characterized the activity of seaweed alkaloids with anti-inflammatory properties. In this review, we have gathered the current knowledge about marine alkaloids with anti-inflammatory activity and suggest future perspectives for the study and bioprospecting of these compounds.
Collapse
Affiliation(s)
| | | | - Janeusa T. Souto
- Correspondence: ; Tel.: +55-84-99908-7027; Fax: +55-84-3215-3311
| |
Collapse
|
6
|
Vinoth S, Shankar SG, Gurusaravanan P, Janani B, Devi JK. Anti-larvicidal Activity of Silver Nanoparticles Synthesized from Sargassum polycystum Against Mosquito Vectors. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1473-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Ohashi M, Amoa-Bosompem M, Kwofie KD, Agyapong J, Adegle R, Sakyiamah MM, Ayertey F, Owusu KBA, Tuffour I, Atchoglo P, Tung NH, Uto T, Aboagye F, Appiah AA, Appiah-Opong R, Nyarko AK, Anyan WK, Ayi I, Boakye DA, Koram KA, Edoh D, Yamaoka S, Shoyama Y, Ohta N. In vitro antiprotozoan activity and mechanisms of action of selected Ghanaian medicinal plants against Trypanosoma, Leishmania, and Plasmodium parasites. Phytother Res 2018; 32:1617-1630. [PMID: 29733118 DOI: 10.1002/ptr.6093] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/11/2018] [Accepted: 03/24/2018] [Indexed: 11/06/2022]
Abstract
Trypanosomiasis, leishmaniasis, and malaria are protozoan infections of public health importance with thousands of new cases recorded annually. Control of these infection(s) with existing chemotherapy is limited by drug toxicity, lengthy parenteral treatment, affordability, and/or the emergence of resistant strains. Medicinal plants on the other hand are used in the treatment of various infectious diseases although their chemical properties are not fully evaluated. In this study, we screened 112 crude extracts from 72 selected Ghanaian medicinal plants for anti-Trypanosoma, anti-Leishmania, and anti-Plasmodium activities in vitro and investigated their mechanisms of action. Twenty-three extracts from 20 plants showed significant antiprotozoan activity against at least 1 of 3 protozoan parasites screened with IC50 values less than 20 μg/ml. Eleven extracts showed high anti-Trypanosoma activity with Bidens pilosa whole plant and Morinda lucida leaf extracts recording the highest activities. Their IC50 (selectivity index [SI]) values were 5.51 μg/ml (35.00) and 5.96 μg/ml (13.09), respectively. Nine extracts had high anti-Leishmania activity with Annona senegalensis and Cassia alata leaf extracts as the most active. Their IC50 (SI) values were 10.8 μg/ml (1.50) and 10.1 μg/ml (0.37), respectively. Six extracts had high anti-Plasmodium activity with the leaf and stem-bark extracts of Terminalia ivorensis recording the highest activity. Their IC50 (SI) values were 7.26 μg/ml (129.36) and 17.45 μg/ml (17.17), respectively. Only M. lucida at 25 μg/ml induced significant apoptosis-like cell death in Trypanosoma parasites. Anti-Leishmania active extracts induced varying morphological changes in Leishmania parasites such as multiple nuclei and/or kinetoplast, incomplete flagella division, or nuclear fragmentation. Active extracts may be potential sources for developing new chemotherapy against these infections.
Collapse
Affiliation(s)
- Mitsuko Ohashi
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana.,Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Michael Amoa-Bosompem
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana.,Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kofi Dadzie Kwofie
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana.,Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Jefferey Agyapong
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Richard Adegle
- Centre for Plant Medicine Research, P.O. Box 73, Mampong, Akuapem, Ghana
| | - Maxwell Mamfe Sakyiamah
- Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Centre for Plant Medicine Research, P.O. Box 73, Mampong, Akuapem, Ghana
| | - Frederick Ayertey
- Centre for Plant Medicine Research, P.O. Box 73, Mampong, Akuapem, Ghana
| | - Kofi Baffuor-Awuah Owusu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Isaac Tuffour
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Philip Atchoglo
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Nguyen Huu Tung
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Takuhiro Uto
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Frederick Aboagye
- Centre for Plant Medicine Research, P.O. Box 73, Mampong, Akuapem, Ghana
| | | | - Regina Appiah-Opong
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Alexander K Nyarko
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - William Kofi Anyan
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Irene Ayi
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Daniel Adjei Boakye
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Kwadwo Ansah Koram
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P.O. Box LG 581, Legon, Ghana
| | - Dominic Edoh
- Centre for Plant Medicine Research, P.O. Box 73, Mampong, Akuapem, Ghana
| | - Shoji Yamaoka
- Section of Environmental Parasitology, Faculty of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yukihiro Shoyama
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan
| | - Nobuo Ohta
- Centre for Plant Medicine Research, P.O. Box 73, Mampong, Akuapem, Ghana
| |
Collapse
|
8
|
Inbaneson SJ, Ravikumar S, Suganthi P. In vitro antiplasmodial effect of ethanolic extracts of coastal medicinal plants along Palk Strait against Plasmodium falciparum. Asian Pac J Trop Biomed 2015; 2:364-7. [PMID: 23569931 DOI: 10.1016/s2221-1691(12)60057-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/04/2011] [Accepted: 07/30/2011] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To identify the possible antiplasmodial compounds from Achyranthes aspera (A. aspera), Acalypha indica (A. indica), Jatropha glandulifera (J. glandulifera) and Phyllanthus amarus (P. amarus). METHODS The A. aspera, A. indica, J. glandulifera and P. amarus were collected along Palk Strait and the extraction was carried out in ethanol. The filter sterilized extracts (100, 50, 25, 12.5, 6.25 and 3.125 µg/mL) of leaf, stem, root and flower extracts of A. aspera, A. indica, J. glandulifera and P. amarus were tested for antiplasmodial activity against Plasmodium falciparum. The potential extracts were also tested for their phytochemical constituents. RESULTS Of the selected plants species parts, the stem extract of A. indica showed excellent antiplasmodial activity (IC50= 43.81µg/mL) followed by stem extract of J. glandulifera (IC50= 49.14µg/mL). The stem extract of A. aspera, leaf and root extracts of A. indica, leaf, root and seed extracts of J. glandulifera and leaf and stem extracts of P. amarus showed IC50 values between 50 and 100 µg/mL. Statistical analysis revealed that, significant antiplasmodial activity (P<0.01) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes was also carried out and it showed that there were no morphological changes in erythrocytes by the ethanolic extract of all the tested plant extracts. The in vitro antiplasmodial activity might be due to the presence of alkaloids, glycosides, flavonoids, phenols, saponins, triterpenoids, proteins, and tannins in the ethanolic extracts of tested plants. CONCLUSIONS The ethanolic stem extracts of P. amarus and J. glandulifera possess lead compounds for the development of antiplasmodial drugs.
Collapse
Affiliation(s)
- Samuel Jacob Inbaneson
- Department of Oceanography and Coastal Area Studies, School of Marine Sciences, Alagappa University, Thondi Campus, Thondi - 623 409, Ramanathapuram District, Tamil Nadu, India
| | | | | |
Collapse
|
9
|
Veerabadhran M, Manivel N, Mohanakrishnan D, Sahal D, Muthuraman S. Antiplasmodial activity of extracts of 25 cyanobacterial species from coastal regions of Tamil Nadu. PHARMACEUTICAL BIOLOGY 2014; 52:1291-1301. [PMID: 25026331 DOI: 10.3109/13880209.2014.890231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Marine cyanobacteria offer considerable potential to isolate new antimalarials to meet a pressing need of our times. OBJECTIVE To explore the antiplasmodial properties of marine cyanobacteria. MATERIALS AND METHODS Cyanobacterial samples collected from the coastal regions of Tamil Nadu were identified using light microscopy, and the strains were cultivated in ASN-III medium. Organic extracts (0-100 µg mL(-1)) of 25 in vitro mass-cultivated cyanobacteria, prepared using methanol: chloroform mixture (1:1 v/v) were evaluated for their antiplasmodial activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum by fluorescence-based SYBR Green I assay where chloroquine was used as a control. To detect the toxic effects of cyanobacterial extracts against red blood cells, the invasion, maturation, and growth rate of malarial parasites in cyanobacterial extracts pre-treated versus untreated erythrocytes were quantified microscopically. Mammalian cell line (HeLa) was used to determine cyanobacterial extract toxicity using the MTT assay. RESULTS The extracts of Lyngbya aestuarii Liebm. ex Gomont CNP 1005 (C12) Oscillatoria boryana BDU 91451 (C22) and Oscillatoria boryana Bory ex Gomont BDU 141071 (C18) showed promising antiplasmodial activity (IC50 = 18, 18, and 51 μg mL(-1) respectively) against Pf3D7. Pretreatment of red blood cells with IC100 of C12, C18, and C22 (40, 100, and 40 µgmL(-1), respectively) did not significantly influence the invasion, maturation, and growth rate of malarial parasites in comparison with untreated RBC controls suggesting a lack of toxicity to host cells. MTT assay based IC50 (>200 μg mL(-1)) of these extracts against HeLa cell line also indicates their high selectivity against the malaria parasite. DISCUSSION AND CONCLUSION These exploratory studies suggest the possibilities of development of new antimalarial compounds from marine cyanobacteria.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Department of Marine Biotechnology, National Facility for Marine Cyanobacteria, Bharathidasan University , Tiruchirappalli, Tamil Nadu , India and
| | | | | | | | | |
Collapse
|
10
|
Vijayakumar S, Amirthanathn A. Bioactivity of sea grass against the malarial fever mosquito Culex quinquefasciatus. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60574-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Rivera N, López PY, Rojas M, Fortoul TI, Reynada DY, Reyes AJ, Rivera E, Beltrán HI, Malagón F. Antimalarial efficacy, cytotoxicity, and genotoxicity of methanolic stem bark extract from Hintonia latiflora in a Plasmodium yoelii yoelii lethal murine malaria model. Parasitol Res 2014; 113:1529-36. [DOI: 10.1007/s00436-014-3797-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/28/2014] [Indexed: 01/29/2023]
|
12
|
In vitro antiplasmodial activity of marine sponge Clathria vulpina extract against chloroquine sensitive Plasmodium falciparum. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60433-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Spavieri J, Allmendinger A, Kaiser M, Itoe MA, Blunden G, Mota MM, Tasdemir D. Assessment of dual life stage antiplasmodial activity of british seaweeds. Mar Drugs 2013; 11:4019-34. [PMID: 24152562 PMCID: PMC3826147 DOI: 10.3390/md11104019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/29/2023] Open
Abstract
Terrestrial plants have proven to be a prolific producer of clinically effective antimalarial drugs, but the antimalarial potential of seaweeds has been little explored. The main aim of this study was to assess the in vitro chemotherapeutical and prophylactic potential of the extracts of twenty-three seaweeds collected from the south coast of England against blood stage (BS) and liver stage (LS) Plasmodium parasites. The majority (14) of the extracts were active against BS of P. falciparum, with brown seaweeds Cystoseira tamariscifolia, C. baccata and the green seaweed Ulva lactuca being the most active (IC(50)s around 3 μg/mL). The extracts generally had high selectivity indices (>10). Eight seaweed extracts inhibited the growth of LS parasites of P. berghei without any obvious effect on the viability of the human hepatoma (Huh7) cells, and the highest potential was exerted by U. lactuca and red seaweeds Ceramium virgatum and Halopitys incurvus (IC50 values 14.9 to 28.8 μg/mL). The LS-active extracts inhibited one or more key enzymes of the malarial type-II fatty acid biosynthesis (FAS-II) pathway, a drug target specific for LS. Except for the red seaweed Halopitys incurvus, all LS-active extracts showed dual activity versus both malarial intracellular stage parasites. This is the first report of LS antiplasmodial activity and dual stage inhibitory potential of seaweeds.
Collapse
Affiliation(s)
- Jasmine Spavieri
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, London WC1N 1AX, UK; E-Mails: (J.S.); (A.A.)
| | - Andrea Allmendinger
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, London WC1N 1AX, UK; E-Mails: (J.S.); (A.A.)
| | - Marcel Kaiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel CH-4002, Switzerland; E-Mail:
- University of Basel, Petersplatz 1, Basel CH-4003, Switzerland
| | - Maurice Ayamba Itoe
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon 1649-028, Portugal; E-Mails: (M.A.I.); (M.M.M.)
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK; E-Mail:
| | - Maria M. Mota
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon 1649-028, Portugal; E-Mails: (M.A.I.); (M.M.M.)
| | - Deniz Tasdemir
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, London WC1N 1AX, UK; E-Mails: (J.S.); (A.A.)
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
14
|
In vitro and in vivo antiplasmodial activity of the root extracts of Brucea mollis Wall. ex Kurz. Parasitol Res 2012; 112:637-42. [PMID: 23108921 DOI: 10.1007/s00436-012-3178-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Malaria control is compromised worldwide by continuously evolving drug-resistant strains of the parasite demanding exploration of natural resources for developing newer antimalarials. The northeastern region of India is endemic for malaria characterized by high prevalence of drug-resistant Plasmodium falciparum strains. Many plants are used by the indigenous communities living in the northeast India in their traditional system of medicine for the treatment of malarial fever. Folklore claim of antimalarial property of one such plant Brucea mollis was evaluated in vitro and in vivo for antiplasmodial activity. Crude extracts from dried B. mollis root powder were prepared through soxhlet extraction using petroleum ether, methanol, and water sequentially. Methanol extract was further partitioned between chloroform and water. These extracts were tested in vitro against laboratory-adapted chloroquine-sensitive and chloroquine-resistant strains of P. falciparum. In in vitro evaluation, extracts were found more active on the chloroquine-sensitive strain. Methanolic-chloroform (IC(50) 5.1 μg ml(-1)) and methanolic-aqueous (IC(50) 13.9 μg ml(-1)) extracts recorded significant in vitro antiplasmodial activity which was also supported by their promising in vivo activity (ED(50) 72 and 30 mg kg(-1) bw day(-1), respectively) against chloroquine-resistant Plasmodium yoelli N-67 strain in Swiss albino mice. Methanolic-aqueous extract-treated mice survived on average for 14 days that was comparable to the reference drug chloroquine. This is the first report of antiplasmodial activity of B. mollis validating the traditional use of this plant as antimalarial in the northeast India and calls for further detailed investigations.
Collapse
|
15
|
Ali MS, Ravikumar S, Beula JM. Spatial and temporal distribution of mosquito larvicidal compounds in mangroves. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60087-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Inbaneson SJ, Ravikumar S. In vitro antiplasmodial activity of Clathria vulpina sponge associated bacteria against Plasmodium falciparum. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60069-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
In vitro antiplasmodial activity of PDDS-coated metal oxide nanoparticles against Plasmodium falciparum. APPLIED NANOSCIENCE 2012. [DOI: 10.1007/s13204-012-0130-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
In vitro antibacterial activity of the metal oxide nanoparticles against urinary tract infectious bacterial pathogens. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60022-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Ravikumar S, Inbaneson SJ, Suganthi P. In vitro antiplasmodial activity of ethanolic extracts of South Indian medicinal plants against Plasmodium falciparum. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60043-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
In vitro antiplasmodial effect of ethanolic extracts of traditional medicinal plant Ocimum species against Plasmodium falciparum. ASIAN PAC J TROP MED 2012; 5:103-6. [DOI: 10.1016/s1995-7645(12)60004-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/30/2011] [Accepted: 10/15/2011] [Indexed: 11/20/2022] Open
|
21
|
Selvan GP, Ravikumar S, Ramu A, Neelakandan P. Antagonistic activity of marine sponge associated Streptomyces sp. against isolated fish pathogens. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
In vitro antiplasmodial activity of chosen terrestrial medicinal plants against Plasmodium falciparum. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60169-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
23
|
Ravikumar S, Ramanathan G, Gnanadesigan M, Ramu A, Vijayakumar V. In vitro antiplasmodial activity of methanolic extracts from seaweeds of South West Coast of India. ASIAN PAC J TROP MED 2011; 4:862-5. [PMID: 22078947 DOI: 10.1016/s1995-7645(11)60209-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/25/2011] [Accepted: 09/15/2011] [Indexed: 10/15/2022] Open
Abstract
OBJECTIVE To identify the in vitro antiplasmodial activity of seaweed plants against Plasmodium falciparumstrains. METHODS A total of eight seaweeds were collected from Kanyakumari district, Tamilnadu, India. The in vitro antiplasmodial activity was performed in 96 well plates against Plasmodium falciparum, and preliminary phytochemcial analysis were performed for the extracts. RESULTS Of the selected plants Enteromorpha intestinalis (2.61%) showed maximum percentage of extraction. The minimum concentration of inhibitory (IC50) value was observed with Chaetomorpha antennina [(26.37±4.14) μg/mL] further, the positive controls such as chloroquine and artemether showed antiplasmodial activities (IC50) with (19.10±5.93) and (6.03±0.21) μg/mL concentrations, respectively. The preliminary phytochemical analysis of the seaweed extracts showed a variety of phytochemical constituents such as carboxylic acids, phenols, protein, resins, steroids and sugars. CONCLUSIONS The antiplasmodial activity of the seaweed extract might due to the presence of sugars and phenolic compounds. From the present findings, it is concluded that, the seaweed extract of Chaetomorpha antennina can be further used as a putative antiplasmodial drugs in near future.
Collapse
Affiliation(s)
- S Ravikumar
- School of Marine Sciences, Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi Campus, Thondi - 623 409, Ramanathapuram District, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
24
|
Vinayak RC, Sudha SA, Chatterji A. Bio-screening of a few green seaweeds from India for their cytotoxic and antioxidant potential. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:2471-2476. [PMID: 21674507 DOI: 10.1002/jsfa.4490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/05/2011] [Accepted: 04/18/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND It has been evidenced in several epidemiological studies that seaweeds when consumed as diet protect against several chronic oxidative stress-related diseases. Seaweeds, raw, cooked, or dried, are used as food in many cultures, although not very popularly in India. Globally, several studies have indicated that seaweeds are a rich source of phenolic compounds and have antioxidant properties. In the present study, we screened methanolic extracts (MEs) of five species of green seaweeds commonly found in India for their cytotoxic activity by brine shrimp lethality assay and antioxidant properties using various in vitro assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power and metal ion chelating assays. RESULTS A markedly variable, dose-dependent activity was observed in all the seaweed extracts relative to their total phenolic content. Statistical analysis indicated a significantly strong correlation between the DPPH radical scavenging activity and total phenolic content (R(2) = 0.88, P < 0.05) as well as reducing power and total phenolic content (R(2) = 0.99, P < 0.01) of the dry MEs. Also, a very poor correlation between total phenolic content and metal chelating activity (R(2) = 0.13, P > 0.05) was noted. None of the seaweed extracts were potently cytotoxic. CONCLUSION The underlying results endorse seaweeds as a rich, novel source of antioxidant compounds needing systemic exploration.
Collapse
Affiliation(s)
- Rashmi C Vinayak
- Aquaculture Laboratory, Biological Oceanography Division, National Institute of Oceanography, Panaji, Goa, India.
| | | | | |
Collapse
|
25
|
Synergy of the antiretroviral protease inhibitor indinavir and chloroquine against malaria parasites in vitro and in vivo. Parasitol Res 2011; 109:1519-24. [PMID: 21537980 DOI: 10.1007/s00436-011-2427-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
Many malaria-endemic areas are also associated with high rates of human immunodeficiency virus (HIV) infection. An understanding of the chemotherapeutic interactions that occur during malaria and HIV co-infections is important. Our previous studies have demonstrated that some antiretroviral protease inhibitors are effective in inhibiting Plasmodium falciparum growth in vitro. Currently, studies examining the interactions between antiretroviral protease inhibitors and antimalarial drugs are being conducted, but the data are limited. In this study, we examined the synergistic interactions between the antiretroviral protease inhibitor indinavir and chloroquine (CQ) in chloroquine-resistant and chloroquine-sensitive malaria parasites in vitro and in vivo. In vitro, by using modified fixed-ratio isobologram method, fractional inhibitory concentrations index (FICI) was calculated to indicate the interaction between the two drugs. The results demonstrated that indinavir interacted synergistically with chloroquine against both chloroquine-sensitive P. falciparum clone 3D7 (mean FICI 0.784) and multidrug-resistant P. falciparum clone Dd2 (mean FICI 0.599). In vivo drug interactions were measured using a 4-day suppressive test in a rodent malaria model infected with Plasmodium chabaudi. We observed that indinavir enhanced the antimalarial activity of chloroquine against both the chloroquine-sensitive line P. chabaudi ASS and the chloroquine-resistant line P. chabaudi ASCQ. More importantly, chloroquine had a 100% clearance of asexual parasites when used in combination with indinavir at an appropriate dose ratio (10 mg/kg CQ + 1.8 g/kg indinavir) where there was no obvious toxicity. We conclude from this study that the combination of indinavir and chloroquine may become a novel antimalarial drug regimen.
Collapse
|