1
|
Hu L, Guan C, Zhao Y, Zhang W, Chai R, Teng J, Tian Q, Xun M, Wu F. Cloning, sequencing, expression, and purification of aspartic proteases isolated from two human Demodex species. Int J Biol Macromol 2023; 253:127404. [PMID: 37848116 DOI: 10.1016/j.ijbiomac.2023.127404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Aspartic proteases (ASPs) are important hydrolases for parasitic invasion of host tissues or cells. This was the first study on Demodex ASP. First, the complete coding sequence (CDS) was amplified, cloned and sequenced. Then, the protein physical and chemical properties was analysed. Finally, the recombinant plasmid, expression and purification system was established. Results showed that the lengths of CDS of Demodex folliculorum and D. brevis were 1161 and 1173 bp, respectively. The molecular weight of the protein was approximately 40 KDa. It contained an aspartic acid residue, a substrate-binding site and signal peptide, yet lacked a transmembrane domain and was located in the membrane or extracellular matrix. The phylogenetic and conserved motif analyses showed that D. folliculorum and D. brevis clustered separately and then formed a single branch, which finally clustered with other Acariformes species. The prokaryotic expression systems for recombinant ASP with His-tag (rASP-His) and GST-tag (rASP-GST) were constructed. The inclusion bodies of rASP-His were renaturated by gradient urea and purified using NI beads, while those of rASP-GST were renaturated by sarkosyl and Triton X-100 and purified using GST beads. Conclusively, the prokaryotic expression and purification system of Demodex rASP was successfully established for further pathogenic mechanism research.
Collapse
Affiliation(s)
- Li Hu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenglin Guan
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yae Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Wanyu Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Rong Chai
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Juan Teng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China; Linyi People's Hospital, Linyi, China
| | - Qiong Tian
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Xun
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Feng Wu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
2
|
Prasher P, Baghra D, Singh D, Thakur S, Gill NK, Kesavan AK. Molecular identification and phylogenetic relationship of Demodex mites based on mitochondrial 16S rDNA. Trop Parasitol 2021; 10:136-141. [PMID: 33747882 PMCID: PMC7951083 DOI: 10.4103/tp.tp_76_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/06/2020] [Indexed: 11/04/2022] Open
Abstract
Background and Objective Demodex mites are tiny parasites that live around hair follicles of mammals. The two main species of Demodex i.e. Demodex folliculorum and Demodex brevis present in humans are found near the hair follicles of eyes. The present study was to understand the presence of Demodex mites in people suffering from blepharitis in Amritsar, Punjab. Material and Methods Demodex mites samples present in blepharitis patients were isolated from the eyelashes. DNA was isolated from three mites and used for PCR amplification of mitochondrial (mt) 16S rDNA. The amplified PCR product were purified and used for molecular identification. Results The amplified mt16s rDNA product was sequenced and subjected to BLAST search in the NCBI database for molecular identification. The identified mite belongs to Demodex folliculorum species. The phylogenetic tree constructed by using mt16s rDNA sequence suggests that D. folliculorum is closer to D. canis than to D. brevis. Conclusion All the three isolates belong to D. folliculorum and the mitochondrial DNA 16S rDNA partial sequence is applicable for phylogenetic relationship analysis.
Collapse
Affiliation(s)
- Pawan Prasher
- Sri Guru Ram Das Institute of Medical Science and Research, Amritsar, Punjab, India
| | - Dolly Baghra
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, India
| | - Drishtant Singh
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharad Thakur
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Navpreet Kaur Gill
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, India
| | - Anup Kumar Kesavan
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
3
|
Gazi U, Taylan-Ozkan A, Mumcuoglu KY. Immune mechanisms in human and canine demodicosis: A review. Parasite Immunol 2019; 41:e12673. [PMID: 31557333 DOI: 10.1111/pim.12673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Demodex mites are saprophytic parasites of the mammalian skin, mostly found in or near pilosebaceous units of hairy regions. While they can be found in healthy humans and animals without causing any clinical manifestations, they were suggested to create pathogenic symptoms when they appear in high densities under favourable conditions (ie, demodicosis). Nevertheless, their role as the primary causative agent of the pathogenic conditions in humans is debated today. Canine demodicosis, which is highly prevalent in certain dog breeds, provides a valuable tool for studying the pathogenesis of human demodicosis. Canine and human demodicosis are caused by different Demodex species, and the clinical manifestations in former could be life-threatening. Nevertheless, current literature suggests similar immune responses and immune evasion mechanisms in human and canine demodicosis; cellular immunity appeared to have a central role in protection against demodicosis, and Demodex mites were shown to influence both innate and adaptive immune response to escape immune attack. The aim of this review is to summarize the relevant literature on demodicosis obtained from studies conducted on both organisms, and draw the attention to the effect of mite-associated factors (eg, microbiota) on the different clinical manifestations displayed during human and canine demodicosis.
Collapse
Affiliation(s)
- Umut Gazi
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Aysegul Taylan-Ozkan
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia, Cyprus.,Department of Medical Microbiology, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Kosta Y Mumcuoglu
- Parasitology Unit, Department of Microbiology and Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
4
|
Hu L, Zhao Y, Yang Y, Niu D, Yang R. LSU rDNA D5 region: the DNA barcode for molecular classification and identification of Demodex. Genome 2019; 62:295-304. [DOI: 10.1139/gen-2018-0168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whether ribosomal genes can be used as DNA barcodes for molecular identification of Demodex (Acariformes: Demodicidae) is unclear. To examine this, Demodex folliculorum, D. brevis, D. canis, and D. caprae were collected for DNA extraction, rDNA fragments amplification, sequencing, and analysis. The V2 and V4 regions of SSU rDNA; D5, D6, and D8 regions of LSU rDNA; and ITS region were obtained from the four morphospecies. BLAST analysis showed that the obtained sequences matched those of Demodex or Aplonobia (Acariformes: Tetranychidae) in Raphignathae. Phylogenetic trees derived from V2, V4, D5, D6, and D8 regions, but not from ITS region, showed that the four species of Demodex clustered independently. Sequence divergence analysis further demonstrated that D5, D6, and D8 regions had obvious barcoding gap between intraspecific and interspecific divergences, with the gap of D5 (16.91%) larger than that of D6 (11.82%) and D8 (4.66%). The V2 and V4 regions did not have a barcoding gap, as the intraspecific and interspecific divergences partially overlapped. For the ITS region, intraspecific and interspecific divergences completely overlapped. These results suggest that the D5, D6, and D8 regions of LSU rDNA, especially D5, are suitable DNA barcodes for Demodex.
Collapse
Affiliation(s)
- Li Hu
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yae Zhao
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yuanjun Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Dongling Niu
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| | - Rui Yang
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
5
|
Phylogeny and species delimitation of Flammulina: taxonomic status of winter mushroom in East Asia and a new European species identified using an integrated approach. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1409-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
DNA barcoding for molecular identification of Demodex based on mitochondrial genes. Parasitol Res 2017; 116:3285-3290. [PMID: 29032499 DOI: 10.1007/s00436-017-5641-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/02/2017] [Indexed: 01/20/2023]
Abstract
There has been no widely accepted DNA barcode for species identification of Demodex. In this study, we attempted to solve this issue. First, mitochondrial cox1-5' and 12S gene fragments of Demodex folloculorum, D. brevis, D. canis, and D. caprae were amplified, cloned, and sequenced for the first time; intra/interspecific divergences were computed and phylogenetic trees were reconstructed. Then, divergence frequency distribution plots of those two gene fragments were drawn together with mtDNA cox1-middle region and 16S obtained in previous studies. Finally, their identification efficiency was evaluated by comparing barcoding gap. Results indicated that 12S had the higher identification efficiency. Specifically, for cox1-5' region of the four Demodex species, intraspecific divergences were less than 2.0%, and interspecific divergences were 21.1-31.0%; for 12S, intraspecific divergences were less than 1.4%, and interspecific divergences were 20.8-26.9%. The phylogenetic trees demonstrated that the four Demodex species clustered separately, and divergence frequency distribution plot showed that the largest intraspecific divergence of 12S (1.4%) was less than cox1-5' region (2.0%), cox1-middle region (3.1%), and 16S (2.8%). The barcoding gap of 12S was 19.4%, larger than cox1-5' region (19.1%), cox1-middle region (11.3%), and 16S (13.0%); the interspecific divergence span of 12S was 6.2%, smaller than cox1-5' region (10.0%), cox1-middle region (14.1%), and 16S (11.4%). Moreover, 12S has a moderate length (517 bp) for sequencing at once. Therefore, we proposed mtDNA 12S was more suitable than cox1 and 16S to be a DNA barcode for classification and identification of Demodex at lower category level.
Collapse
|
7
|
Molecular identification and phylogenetic study of Demodex caprae. Parasitol Res 2014; 113:3601-8. [DOI: 10.1007/s00436-014-4025-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/04/2014] [Indexed: 10/24/2022]
|
8
|
Bian EB, Li J, He XJ, Zong G, Jiang T, Li J, Zhao B. Epigenetic modification in gliomas: role of the histone methyltransferase EZH2. Expert Opin Ther Targets 2014; 18:1197-206. [PMID: 25046371 DOI: 10.1517/14728222.2014.941807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Gliomas are characterized by increased anaplasia, malignization, proliferation and invasion. They exhibit high resistance to standard treatment with combinations of radiotherapy and chemotherapy. They are currently the most common primary malignancy tumors in the brain that is related to a high mortality rate. Recently, increasing evidence suggests that EZH2 is involved in a number of glioma cell processes, including proliferation, apoptosis, invasion and angiogenesis. AREAS COVERED In this review, we emphasize the role of EZH2 in gliomas. We also address that EZH2 interacting with DNA methylation mediates transcriptional repression of specific genes in gliomas, and the regulation of EZH2 by microRNAs in gliomas. EXPERT OPINION Although the exact role of EZH2 in gliomas has not been fully elucidated, to understand the role of EZH2 proteins in epigenetic modification will provide valuable insights into the causes of gliomas, and pave the way to the potential future applications of EZH2 in the treatment of gliomas.
Collapse
Affiliation(s)
- Er-Bao Bian
- The Second Affiliated Hospital of Anhui Medical University, Department of Neurosurgery , Hefei 230601 , China
| | | | | | | | | | | | | |
Collapse
|
9
|
Ferrer L, Ravera I, Silbermayr K. Immunology and pathogenesis of canine demodicosis. Vet Dermatol 2014; 25:427-e65. [PMID: 24910252 DOI: 10.1111/vde.12136] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/31/2022]
Abstract
Demodex mites colonized the hair follicles and sebaceous glands of mammals millions of years ago and have remained relatively unchanged in this protected ecologic niche since then. The host immune system detects and tolerates their presence. Toll-like receptor-2 of keratinocytes has been demonstrated to recognize mite chitin and to elicit an innate immune response. The subsequent acquired immune response is poorly understood at present, but there is experimental and clinical evidence that this is the main mechanism in the control of mite proliferation. A transgenic mouse model (STAT(-/-) /CD28(-/-) ) has demonstrated that the immune response is complex, probably involving both cellular and humoral mechanisms and requiring the role of co-stimulatory molecules (CD28). It is known that a genetic predisposition for developing canine juvenile generalized demodicosis exists; however, the primary defect leading to the disease remains unknown. Once the mite proliferation is advanced, dogs show a phenotype that is similar to the T-cell exhaustion characterized by low interleukin-2 production and high interleukin-10 and transforming growth factor-β production by lymphocytes, as described in other viral and parasitic diseases. Acaricidal treatment (macrocyclic lactones) decreases the antigenic load and reverses T-cell exhaustion, leading to a clinical cure. Although in recent years there have been significant advances in the management and understanding of this important and complex canine disease, more research in areas such as the aetiology of the genetic predisposition and the immune control of the mite populations is clearly needed.
Collapse
Affiliation(s)
- Lluis Ferrer
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA, 01536, USA
| | | | | |
Collapse
|
10
|
Zhao YE, Ma JX, Hu L, Wu LP, De Rojas M. Discrimination between Demodex folliculorum (Acari: Demodicidae) isolates from China and Spain based on mitochondrial cox1 sequences. J Zhejiang Univ Sci B 2014; 14:829-36. [PMID: 24009203 DOI: 10.1631/jzus.b1200363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For a long time, classification of Demodex mites has been based mainly on their hosts and phenotypic characteristics. A new subspecies of Demodex folliculorum has been proposed, but not confirmed. Here, cox1 partial sequences of nine isolates of three Demodex species from two geographical sources (China and Spain) were studied to conduct molecular identification of D. folliculorum. Sequencing showed that the mitochondrial cox1 fragments of five D. folliculorum isolates from the facial skin of Chinese individuals were 429 bp long and that their sequence identity was 97.4%. The average sequence divergence was 1.24% among the five Chinese isolates, 0.94% between the two geographical isolate groups (China (5) and Spain (1)), and 2.15% between the two facial tissue sources (facial skin (6) and eyelids (1)). The genetic distance and rate of third-position nucleotide transition/transversion were 0.0125, 2.7 (3/1) among the five Chinese isolates, 0.0094, 3.1 (3/1) between the two geographical isolate groups, and 0.0217, 4.4 (3/1) between the two facial tissue sources. Phylogenetic trees showed that D. folliculorum from the two geographical isolate groups did not form sister clades, while those from different facial tissue sources did. According to the molecular characteristics, it appears that subspecies differentiation might not have occurred and that D. folliculorum isolates from the two geographical sources are of the same population. However, population differentiation might be occurring between isolates from facial skin and eyelids.
Collapse
Affiliation(s)
- Ya-e Zhao
- Department of Immunology and Pathogen Biology, Xi'an Jiaotong University College of Medicine, Xi'an 710061, China; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | | | | | | | | |
Collapse
|
11
|
Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence. Parasitol Res 2013; 112:3969-77. [DOI: 10.1007/s00436-013-3586-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
12
|
Molecular identification of four phenotypes of human Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA. Parasitol Res 2013; 112:3703-11. [DOI: 10.1007/s00436-013-3558-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
|
13
|
Sastre N, Ravera I, Villanueva S, Altet L, Bardagí M, Sánchez A, Francino O, Ferrer L. Phylogenetic relationships in three species of canine Demodex mite based on partial sequences of mitochondrial 16S rDNA. Vet Dermatol 2013; 23:509-e101. [PMID: 23140317 DOI: 10.1111/vde.12001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The historical classification of Demodex mites has been based on their hosts and morphological features. Genome sequencing has proved to be a very effective taxonomic tool in phylogenetic studies and has been applied in the classification of Demodex. Mitochondrial 16S rDNA has been demonstrated to be an especially useful marker to establish phylogenetic relationships. HYPOTHESIS/OBJECTIVES To amplify and sequence a segment of the mitochondrial 16S rDNA from Demodex canis and Demodex injai, as well as from the short-bodied mite called, unofficially, D. cornei and to determine their genetic proximity. METHODS Demodex mites were examined microscopically and classified as Demodex folliculorum (one sample), D. canis (four samples), D. injai (two samples) or the short-bodied species D. cornei (three samples). DNA was extracted, and a 338 bp fragment of the 16S rDNA was amplified and sequenced. RESULTS The sequences of the four D. canis mites were identical and shared 99.6 and 97.3% identity with two D. canis sequences available at GenBank. The sequences of the D. cornei isolates were identical and showed 97.8, 98.2 and 99.6% identity with the D. canis isolates. The sequences of the two D. injai isolates were also identical and showed 76.6% identity with the D. canis sequence. CONCLUSION Demodex canis and D. injai are two different species, with a genetic distance of 23.3%. It would seem that the short-bodied Demodex mite D. cornei is a morphological variant of D. canis.
Collapse
Affiliation(s)
- Natalia Sastre
- Servei Veterinari de Genètica Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao YE, Wang ZH, Xu Y, Xu JR, Liu WY, Wei M, Wang CY. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites. J Zhejiang Univ Sci B 2013; 13:763-8. [PMID: 23024043 DOI: 10.1631/jzus.b1200155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi'an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi'an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%-99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites.
Collapse
Affiliation(s)
- Ya-e Zhao
- Department of Immunology and Pathogen Biology, Xi'an Jiaotong University College of Medicine, Xi'an, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhao YE, Wu LP, Hu L, Xu Y, Wang ZH, Liu WY. Sequencing for complete rDNA sequences (18S, ITS1, 5.8S, ITS2, and 28S rDNA) of Demodex and phylogenetic analysis of Acari based on 18S and 28S rDNA. Parasitol Res 2012; 111:2109-14. [PMID: 22903416 DOI: 10.1007/s00436-012-3058-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Due to the difficulty of DNA extraction for Demodex, few studies dealt with the identification and the phyletic evolution of Demodex at molecular level. In this study, we amplified, sequenced, and analyzed a complete (Demodex folliculorum) and an almost complete (D12 missing) (Demodex brevis) ribosomal DNA (rDNA) sequence and also analyzed the primary sequences of divergent domains in small-subunit ribosomal RNA (rRNA) of 51 species and in large-subunit rRNA of 43 species from four superfamilies in Acari (Cheyletoidea, Tetranychoidea, Analgoidea, and Ixodoidea). The results revealed that 18S rDNA sequence was relatively conserved in rDNA-coding regions and was not evolving as rapidly as 28S rDNA sequence. The evolutionary rates of transcribed spacer regions were much higher than those of the coding regions. The maximum parsimony trees of 18S and 28S rDNA appeared to be almost identical, consistent with their morphological classification. Based on the fact that the resolution capability of sequence length and the divergence of the 13 segments (D1-D6, D7a, D7b, and D8-D12) of 28S rDNA were stronger than that of the nine variable regions (V1-V9) of 18S rDNA, we were able to identify Demodex (Cheyletoidea) by the indels occurring in D2, D6, and D8.
Collapse
Affiliation(s)
- Ya-E Zhao
- Department of Immunology and Pathogen Biology, Xi'an Jiaotong University College of Medicine, No. 76 Yanta West Road, Xi'an 710061, China.
| | | | | | | | | | | |
Collapse
|
16
|
Zhao YE, Wu LP. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences. Parasitol Res 2012; 111:1113-21. [PMID: 22581346 DOI: 10.1007/s00436-012-2941-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/23/2012] [Indexed: 11/29/2022]
Abstract
To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.
Collapse
Affiliation(s)
- Ya-E Zhao
- Department of Immunology and Pathogen Biology, Xi'an Jiaotong University College of Medicine, No.76 Yanta West Road, Xi'an, China.
| | | |
Collapse
|