1
|
Huang J, Wang J, Li Y, Wang Z, Chu M, Wang Y. Tuftsin: A Natural Molecule Against SARS-CoV-2 Infection. Front Mol Biosci 2022; 9:859162. [PMID: 35402510 PMCID: PMC8984176 DOI: 10.3389/fmolb.2022.859162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 01/03/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continuously progresses despite the application of a variety of vaccines. Therefore, it is still imperative to find effective ways for treating COVID-19. Recent studies indicate that NRP1, an important receptor of the natural peptide tuftsin (released from IgG), facilitates SARS-CoV-2 infection. Here, we found 91 overlapping genes between tuftsin targets and COVID-19-associated genes. We have demonstrated that tuftsin could also target ACE2 and exert some immune-related functions. Molecular docking results revealed that tustin could combine with ACE2 and NRP1 in stable structures, and their interacted regions cover the binding surfaces of S1-protein with the two receptors. Using surface plasmon resonance (SPR) analysis, we confirmed that tuftsin can bind ACE2 and NRP1 directly. Importantly, using SPR-based competition assay we have shown here that tuftsin effectively prevented the binding of SARS-CoV-2 S1-protein to ACE2. Collectively, these data suggest that tuftsin is an attractive therapeutic candidate against COVID-19 and can be considered for translational as well as clinical studies.
Collapse
Affiliation(s)
- Jiahao Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology(Peking University), Beijing, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yan Li
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology(Peking University), Beijing, China
| | - Ziyuan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology(Peking University), Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology(Peking University), Beijing, China
- *Correspondence: Ming Chu, ; Yuedan Wang,
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology(Peking University), Beijing, China
- *Correspondence: Ming Chu, ; Yuedan Wang,
| |
Collapse
|
2
|
Bastos DSS, Silva AC, Novaes RD, Souza ACF, Santos EC, Gonçalves RV, Marques-Da-Silva EA. Could combination chemotherapy be more effective than monotherapy in the treatment of visceral leishmaniasis? A systematic review of preclinical evidence. Parasitology 2022; 149:1-14. [PMID: 35346411 DOI: 10.1017/s0031182022000142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
From a systematic review framework, we assessed the preclinical evidence on the effectiveness of drug combinations for visceral leishmaniasis (VL) treatment. Research protocol was based on the PRISMA guideline. Research records were identified from Medline, Scopus and Web of Science. Animal models, infection and treatment protocols, parasitological and immunological outcomes were analysed. The SYRCLE's (SYstematic Review Center for Laboratory Animal Experimentation) toll was used to evaluate the risk of bias in all studies reviewed. Fourteen papers using mice, hamster and dogs were identified. Leishmania donovani was frequently used to induce VL, which was treated with 23 drugs in 40 different combinations. Most combinations allowed to reduce the effective dose, cost and time of treatment, in addition to improving the parasitological control of Leishmania spp. The benefits achieved from drug combinations were associated with an increased drug's half-life, direct parasitic toxicity and improved immune defences in infected hosts. Selection, performance and detection bias were the main limitations identified. Current evidence indicates that combination chemotherapy, especially those based on classical drugs (miltefosine, amphotericin B antimony-based compounds) and new drugs (CAL-101, PAM3Cys, tufisin and DB766), develops additive or synergistic interactions, which trigger trypanocidal and immunomodulatory effects associated with reduced parasite load, organ damage and better cure rates in VL.
Collapse
Affiliation(s)
- Daniel S S Bastos
- Department of General Biology, Federal University of Viçosa, Viçosa, 36570-000, Minas Gerais, Brazil
| | - Adriana C Silva
- Department of General Biology, Federal University of Viçosa, Viçosa, 36570-000, Minas Gerais, Brazil
| | - Rômulo D Novaes
- Department of Structural Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, 37130-001, Minas Gerais, Brazil
| | - Ana Claudia F Souza
- Department of Animal Biology, Federal Rural University of Rio de Janeiro, Seropédica, 23897-000, Rio de Janeiro, Brazil
| | - Eliziária C Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina39100-00, Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Department of Animal Biology, Federal University of Viçosa, Viçosa, 36570-000, Minas Gerais, Brazil
| | | |
Collapse
|
3
|
Khan MA. Targeted Drug Delivery Using Tuftsin-bearing Liposomes: Implications in the Treatment of Infectious Diseases and Tumors. Curr Drug Targets 2021; 22:770-778. [PMID: 33243117 DOI: 10.2174/1389450121999201125200756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/04/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Tuftsin, a tetrapeptide (Thr-Lys-Pro-Arg), acts as an immunopotentiating molecule with its ability to bind and activate many immune cells, including macrophages or monocytes, neutrophils and dendritic cells. The specific targeting activity of tuftsin has been further increased by its palmitoylation followed by its incorporation into the lipid bilayer of liposomes. Tuftsin-bearing liposomes (Tuft-liposomes) possess several characteristics that enable them to act as a potential drug and vaccine carriers. Tuft-liposomes-loaded anti-microbial drugs have been shown to be highly effective against many infectious diseases, including tuberculosis, leishmaniasis, malaria, candidiasis and cryptococosis. Moreover, Tuft-liposomes also increased the activity of anticancer drug etoposide against fibrosarcoma in mice. Tuft-liposomes showed the immune-potentiating effect and rejuvenated the immune cells in the leukopenic mice. In addition, antigens encapsulated in Tuftsin-bearing liposomes demonstrated greater immunogenicity by increasing the T cell proliferation and antibody secretion. Keeping into consideration their specific targeting and immunopotentiating effects, Tuft-liposomes may potentially be used as promising drug and vaccine delivery systems.
Collapse
Affiliation(s)
- Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
Systematic Review of Host-Mediated Activity of Miltefosine in Leishmaniasis through Immunomodulation. Antimicrob Agents Chemother 2019; 63:AAC.02507-18. [PMID: 31036692 PMCID: PMC6591591 DOI: 10.1128/aac.02507-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
Host immune responses are pivotal for the successful treatment of the leishmaniases, a spectrum of infections caused by Leishmania parasites. Previous studies speculated that augmenting cytokines associated with a type 1 T-helper cell (Th1) response is necessary to combat severe forms of leishmaniasis, and it has been hypothesized that the antileishmanial drug miltefosine is capable of immunomodulation and induction of Th1 cytokines. Host immune responses are pivotal for the successful treatment of the leishmaniases, a spectrum of infections caused by Leishmania parasites. Previous studies speculated that augmenting cytokines associated with a type 1 T-helper cell (Th1) response is necessary to combat severe forms of leishmaniasis, and it has been hypothesized that the antileishmanial drug miltefosine is capable of immunomodulation and induction of Th1 cytokines. A better understanding of the immunomodulatory effects of miltefosine is central to providing a rationale regarding synergistic mechanisms of activity to combine miltefosine optimally with other conventional and future antileishmanials that are currently under development. Therefore, a systematic literature search was performed to evaluate to what extent and how miltefosine influences the host Th1 response. Miltefosine’s effects observed in both a preclinical and a clinical context associated with immunomodulation in the treatment of leishmaniasis are evaluated in this review. A total of 27 studies were included in the analysis. Based on the current evidence, miltefosine is not only capable of inducing direct parasite killing but also of modulating the host immunity. Our findings suggest that miltefosine-induced activation of Th1 cytokines, particularly represented by increased gamma interferon (IFN-γ) and interleukin 12 (IL-12), is essential to prevail over the Leishmania-driven Th2 response. Differences in miltefosine-induced host-mediated effects between in vitro, ex vivo, animal model, and human studies are further discussed. All things considered, an effective treatment with miltefosine is acquired by enhanced functional Th1 cytokine responses and may further be enhanced in combination with immunostimulatory agents.
Collapse
|
5
|
Kovalenko EA, Pashkina EA, Kanazhevskaya LY, Masliy AN, Kozlov VA. Chemical and biological properties of a supramolecular complex of tuftsin and cucurbit[7]uril. Int Immunopharmacol 2017; 47:199-205. [PMID: 28427014 DOI: 10.1016/j.intimp.2017.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/26/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022]
Abstract
Cucurbit[7]uril (CB7) is an uncharged and water-soluble macrocyclic host. CB7 binds to doubly protonated tuftsin, which is the tetrapeptide Thr-Lys-Pro-Arg, with moderate affinity (Ka=2.1×103M-1). In this study, the host-guest complexation was confirmed by fluorescence titration. This affinity would allow for easy release of the peptide under physiological conditions. According to density functional theory calculations, the structural binding motif involves hydrogen bonding. The most energetically stable form had the Arg side chain inside the CB7 cavity. The effects of the tuftsin-CB7 complex on the proliferation and cytokine activity of immune cells were studied. The complex had broader spectrum immunomodulation than free peptides, and caused statistically significant (p<0,05) changes in cytokine production (tumor necrosis factor-α, interleukin-2, interferon-γ, and interleukin-10) by mononuclear cells. By contrast, the free peptide only activated tumor necrosis factor-α production.
Collapse
Affiliation(s)
- Ekaterina A Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, Novosibirsk 630090, Russia.
| | - Ekaterina A Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, Novosibirsk 630099, Russia.
| | - Lyubov Y Kanazhevskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentiev Ave, Novosibirsk 630090, Russia.
| | - Alexey N Masliy
- Kazan National Research Technological University, 68 K. Marx St., Kazan 420015, Russia.
| | - Vladimir A Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, Novosibirsk 630099, Russia.
| |
Collapse
|
6
|
Patere SN, Pathak PO, Kumar Shukla A, Singh RK, Kumar Dubey V, Mehta MJ, Patil AG, Gota V, Nagarsenker MS. Surface-Modified Liposomal Formulation of Amphotericin B: In vitro Evaluation of Potential Against Visceral Leishmaniasis. AAPS PharmSciTech 2017; 18:710-720. [PMID: 27222025 DOI: 10.1208/s12249-016-0553-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/12/2016] [Indexed: 11/30/2022] Open
Abstract
Surface modification of liposomes with targeting ligands is known to improve the efficacy with reduced untoward effects in treating infective diseases like visceral leishmaniasis (VL). In the present study, modified ligand (ML), designed by modifying polysaccharide with a long chain lipid was incorporated in liposomes with the objective to target amphotericin B (Amp B) to reticuloendothelial system and macrophages. Conventional liposomes (CL) and surface modified liposomes (SML) were characterized for size, shape, and entrapment efficiency (E.E.). Amp B SML with 3% w/w of ML retained the vesicular nature with particle size of ∼205 nm, E.E. of ∼95% and good stability. SML showed increased cellular uptake in RAW 264.7 cells which could be attributed to receptor-mediated endocytosis. Compared to Amp B solution, Amp B liposomes exhibited tenfold increased safety in vitro in RAW 264.7 and J774A.1 cell lines. Pharmacokinetics and biodistribution studies revealed high t 1/2, area under the curve (AUC)0-24, reduced clearance and prolonged retention in liver and spleen with Amp B SML compared to other formulations. In promastigote and amastigote models, Amp B SML showed enhanced performance with low 50% inhibitory concentration (IC50) compared to Amp B solution and Amp B CL. Thus, due to the targeting ability of ML, SML has the potential to achieve enhanced efficacy in treating VL.
Collapse
|
7
|
Gómez-Pérez GP, van Bruggen R, Grobusch MP, Dobaño C. Plasmodium falciparum malaria and invasive bacterial co-infection in young African children: the dysfunctional spleen hypothesis. Malar J 2014; 13:335. [PMID: 25158979 PMCID: PMC4161853 DOI: 10.1186/1475-2875-13-335] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/21/2014] [Indexed: 12/25/2022] Open
Abstract
Children with recent or acute malaria episodes are at increased risk of invasive bacterial infections (IBI). However, the exact nature of the malaria-IBI association is still unclear. Young children have an age-related spleen immunologic immaturity, mainly due to the still ongoing development of the marginal zone (MZ) B cell subset. By mounting a rapid antibody response against encapsulated bacteria, these cells are critical for the defence against highly pathogenic microorganisms that do not elicit classical T cell-dependent responses. There is increasing evidence that the anatomy of the spleen becomes disorganized during malaria infection, with complete dissolution of the MZ and apoptosis of MZ B cells. Correspondingly, a reduction in the frequency of the peripheral equivalent of the MZ B cells has been found in malaria endemic areas. A remarkable similarity exists in IBI susceptibility between African children with malaria and hyposplenic or splenectomized patients. However, studies specifically assessing the immune function of the spleen in controlling bacterial infections in young children with malaria are scarce. Here, it is hypothesized that Plasmodium falciparum malaria infection constitutes a detrimental factor in the still immature spleen function of young children, resulting in a factually hyposplenic state during malaria episodes, putting children with malaria at a high risk to develop life-threatening bacterial infections. Studies to confirm or reject this hypothesis are greatly needed, as well as the development of affordable and feasible tools to assess the immune spleen function against encapsulated bacteria in children with malaria.
Collapse
Affiliation(s)
- Gloria P Gómez-Pérez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona 08036, Spain.
| | | | | | | |
Collapse
|
8
|
Rocha DAS, de Andrade Rosa I, de Souza W, Benchimol M. Evaluation of the effect of miltefosine on Trichomonas vaginalis. Parasitol Res 2013; 113:1041-7. [DOI: 10.1007/s00436-013-3738-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/04/2013] [Indexed: 11/29/2022]
|
9
|
Joshi J, Kaur S. To investigate the therapeutic potential of immunochemotherapy with cisplatin + 78 kDa + MPL-A againstLeishmania donovaniin BALB/c mice. Parasite Immunol 2013; 36:3-12. [DOI: 10.1111/pim.12071] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/05/2013] [Indexed: 11/29/2022]
Affiliation(s)
- J. Joshi
- Department of Zoology; Panjab University; Chandigarh India
| | - S. Kaur
- Department of Zoology; Panjab University; Chandigarh India
| |
Collapse
|
10
|
Ali N, Bhattacharya P. Translating immune cell cross-talk into a treatment opportunity for visceral leishmaniasis. Immunotherapy 2013; 5:1025-7. [DOI: 10.2217/imt.13.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Nahid Ali
- Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Pradyot Bhattacharya
- Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| |
Collapse
|
11
|
Kaur T, Makkar P, Randhawa K, Kaur S. Antineoplastic drug, carboplatin, protects mice against visceral leishmaniasis. Parasitol Res 2012; 112:91-100. [PMID: 22961311 DOI: 10.1007/s00436-012-3108-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
In the present study, the leishmanicidal effect of two doses (5 and 10 mg/kg body weight) of the carboplatin was studied in Leishmania donovani-infected BALB/c mice. Mice were infected intracardially with promastigotes of L. donovani, and a month after infection, they were treated intraperitoneally with the two doses of the drug (5 and 10 mg/kg body weight) for five continuous days. Animals were sacrificed on 1 and 15 posttreatment days. Hepatic parasite load was assessed on Geimsa-stained imprints. Immune responses were studied by measuring delayed-type hypersensitivity (DTH) responses, serum IgG isotype levels (IgG1 and IgG2a) and cytokine levels [γ-interferon (IFN-γ), interleukin (IL)-10 and IL-2] in spleen cell cultures by ELISA. To study the drug-induced side effects, various haematological (haemoglobin and total leukocyte count), biochemical (liver and kidney function tests) and histological investigations (kidney, liver and spleen) were carried out. The antileishmanial potential of the drug was revealed by significant reduction in the parasite burden. The infected and treated animals were also found to exhibit increased DTH responses, higher IgG2a levels, lower IgG1 levels and greater cytokine (IFN-γ, IL-10 and IL-2) concentrations pointing towards the generation of mixed Th1/Th2 response. Liver and kidney function tests and histological studies of kidney, liver and spleen of treated mice revealed no side effects. Carboplatin cures mice of visceral leishmaniasis without causing any serious side effects, and the drug was found be more effective at a dose of 10 mg/kg body weight as compared to 5 mg/kg body weight.
Collapse
Affiliation(s)
- Tejinder Kaur
- Department of Zoology, Panjab University, Chandigarh, 160014, India
| | | | | | | |
Collapse
|