1
|
Rinaldi G, Paz Meseguer C, Cantacessi C, Cortés A. Form and Function in the Digenea, with an Emphasis on Host-Parasite and Parasite-Bacteria Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:3-45. [PMID: 39008262 DOI: 10.1007/978-3-031-60121-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Carla Paz Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain.
| |
Collapse
|
2
|
Nefedova D, Terenina N, Mochalova N, Poddubnaya L, Movsesyan S, Gordeev I, Kuchin A, Kreshchenko N. The neuromuscular system in flatworms: serotonin and FMRFamide immunoreactivities and musculature in Prodistomum alaskense (Digenea: Lepocreadiidae), an endemic fish parasite of the northwestern Pacific. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the immunocytochemical method and confocal scanning laser microscopy, we obtained pioneering data on the muscle system organization and presence and localization of biogenic amine serotonin and FMRFamide-related peptides in the nervous system of the trematode Prodistomum alaskense (Ward and Fillingham, 1934) Bray and Merrett 1998 (family Lepocreadiidae). This flatworm is an intestinal parasite of endemic representatives of the marine fauna of the northwestern Pacific Ocean — the prowfish (Zaprora silenus Jordan, 1896) and the lumpfish (Aptocyclus ventricosus (Pallas, 1769)). We provide data of scanning electron microscopy on the tegumental topography of P. alaskense. The body wall musculature of P. alaskense has three layers of muscle fibres — the outer circular, intermediate longitudinal, and inner diagonal. The muscle system elements are well developed in the attachment organs, digestive and reproductive systems, and in the excretory sphincter. Serotonin– and FMRFamide–immunopositive neurons and neurites are found in the head ganglia, circular commissure, longitudinal nerve cords, and in the transversal connective commissures. The innervation of the oral and ventral suckers, pharynx, and the reproductive system compartments by the serotonergic and FMRFamide–immunopositive neurites is revealed. The results discus connection with the published data on the presence and functional roles of the serotonin and FMRFamide-related peptides in Platyhelminthes.
Collapse
Affiliation(s)
- D.A. Nefedova
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, Moscow, Russia, 119071
| | - N.B. Terenina
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, Moscow, Russia, 119071
| | - N.V. Mochalova
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, Moscow, Russia, 119071
| | - L.G. Poddubnaya
- I.D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok 119, Yaroslavl Province, Russia, 152742
| | - S.O. Movsesyan
- Center of Parasitology, А.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Leninsky pr., 33, Moscow, Russia, 119071
| | - I.I. Gordeev
- Russian Federal Research Institute of Fisheries and Oceanography, Verkhn. Krasnoselskaya Str. 17, Moscow, Russia, 107140
- Lomonosov Moscow State University, Leninskiye Gory 1, Moscow, Russia, 119234
| | - A.V. Kuchin
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya Str. 3, Pushchino, Moscow Region, Russia, 142290
| | - N.D. Kreshchenko
- Institute of Cell Biophysics of Russian Academy of Sciences, Institutskaya Str. 3, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
3
|
Unique ultrastructural characteristics of the tegument of the digenean blood fluke Aporocotyle simplex Odhner, 1900 (Digenea: Aporocotylidae), a parasite of flatfishes. Parasitol Res 2019; 118:2801-2810. [PMID: 31468127 DOI: 10.1007/s00436-019-06436-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
This paper includes the first transmission electron microscopical (TEM) study of the tegument of a member of the basal digenean family Aporocotylidae. Scanning electron microscopical investigations of the fish blood fluke Aporocotyle simplex show that each boss on the lateral body surface bears 12-15 simple, uniform spines which extend from 0.5-2.7 μm above the surface of the boss. TEM observations revealed that these spines reach deep beneath the distal cytoplasm of the tegument for much of their length (9-12 μm) and are surrounded by a complex of diagonal muscles in each boss. This is the first record of any digenean with so-called 'sunken' spines. The results suggest that aporocotylid spines arise from within the sarcoplasm of the boss diagonal muscles. The sunken cell bodies (perikarya) of the tegument are connected to the distal cytoplasm via ducts (specialised processes lined by microtubules); this in contrast to other digeneans studied, where they are connected via non-specialised cytoplasmic processes. Within the distal cytoplasm, the tegumental ducts of A. simplex are surrounded by invaginations of the basal membrane and release their cytoplasmic inclusions into the distal cytoplasm. These apparently unique morphological features of the tegument, especially the deep origin of the spines, may represent useful characteristics for understanding aporocotylid relationships, especially in view of the known variation in the spine patterns of aporocotylids.
Collapse
|
4
|
Form and Function in the Digenea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:3-20. [DOI: 10.1007/978-3-030-18616-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Surface histology, topography, and ultrastructure of the tegument of adult Orthocoelium parvipapillatum (Stiles & Goldberger, 1910). Parasitol Res 2016; 115:2757-69. [DOI: 10.1007/s00436-016-5024-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 11/26/2022]
|
6
|
Anuracpreeda P, Phutong S, Ngamniyom A, Panyarachun B, Sobhon P. Surface topography and ultrastructural architecture of the tegument of adult Carmyerius spatiosus Brandes, 1898. Acta Trop 2015; 143:18-28. [PMID: 25510925 DOI: 10.1016/j.actatropica.2014.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 11/14/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
Abstract
Adult Carmyerius spatiosus or stomach fluke has an elongate, cylindrical-shaped, straight to slightly curved body, with conical anterior end and truncated posterior end. The worm measures about 8.7-11.2mm in body length and 2.3-3.0mm in body width across the mid-section. When observed by SEM, the tegumental surface in all part of the body appears highly corrugated with ridges and furrows, and having no spines. The ventral surface has more complex corrugation than those of the dorsal surface. Both anterior and posterior suckers have thick edges covered with transverse folds and appear spineless. The genital pore is located at the anterior part of the body. There are two types of sensory papillae on the surface: type 1 is bulbous in shape with nipple-like tips; type 2 has a similar shape with short cilia on the tip. The dorsal surface exhibits similar surface features, but papillae appear less numerous and are smaller. When observed by TEM, the tegument is divided into four layers. The first layer includes the ridges and furrows which are covered by a trilaminate membrane underlined by a dense lamina and coated externally with the glycocalyx. The second layer of the tegument is a narrow region of cytoplasm that contains high concentrations of ovoid electron lucent tegumental granules (TG1), and disc-shaped electron dense tegumental granules (TG2) as well as lysosomes. TG1 close to the surface invariably exocytose their content into bottoms of the ridges, while some TG2 are fused and have their membrane joined up with the surface membrane. The third layer is the widest middle area of the tegument which contains numerous and evenly distributed mitochondria. Both TG1 and TG2 granules are present but in much fewer number than in the first and second layers. The fourth layer is the innermost zone that rests on and couples with a thick basal lamina. The cytoplasm in this layer is loosely packed and contains numerous infoldings of the basal plasma membrane with closely associated mitochondria. It also contains fairly large numbers of TG1 and TG2 granules which are produced and transported to the tegument by one type of tegumental cells lying in rows underneath the muscular layers.
Collapse
|