1
|
Deng L, Wojciech L, Png CW, Kioh YQD, Ng GC, Chan ECY, Zhang Y, Gascoigne NRJ, Tan KSW. Colonization with ubiquitous protist Blastocystis ST1 ameliorates DSS-induced colitis and promotes beneficial microbiota and immune outcomes. NPJ Biofilms Microbiomes 2023; 9:22. [PMID: 37185924 PMCID: PMC10130167 DOI: 10.1038/s41522-023-00389-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Blastocystis is a species complex that exhibits extensive genetic diversity, evidenced by its classification into several genetically distinct subtypes (ST). Although several studies have shown the relationships between a specific subtype and gut microbiota, there is no study to show the effect of the ubiquitous Blastocystis ST1 on the gut microbiota and host health. Here, we show that Blastocystis ST1 colonization increased the proportion of beneficial bacteria Alloprevotella and Akkermansia, and induced Th2 and Treg cell responses in normal healthy mice. ST1-colonized mice showed decreases in the severity of DSS-induced colitis when compared to non-colonized mice. Furthermore, mice transplanted with ST1-altered gut microbiota were refractory to dextran sulfate sodium (DSS)-induced colitis via induction of Treg cells and elevated short-chain fat acid (SCFA) production. Our results suggest that colonization with Blastocystis ST1, one of the most common subtypes in humans, exerts beneficial effects on host health through modulating the gut microbiota and adaptive immune responses.
Collapse
Affiliation(s)
- Lei Deng
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Lukasz Wojciech
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Chin Wen Png
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Yan Qin Dorinda Kioh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Geok Choo Ng
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Yongliang Zhang
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Nicholas R J Gascoigne
- Immunology Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore
| | - Kevin Shyong Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Healthy Longevity Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore, 117545, Singapore.
| |
Collapse
|
2
|
Norouzi M, Pirestani M, Arefian E, Dalimi A, Sadraei J, Mirjalali H. Exosomes secreted by Blastocystis subtypes affect the expression of proinflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10, IL-4). Front Med (Lausanne) 2022; 9:940332. [PMID: 36035429 PMCID: PMC9404381 DOI: 10.3389/fmed.2022.940332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Blastocystis sp. is a common intestinal parasite, possibly responsible for diarrhea, vomiting and nausea, abdominal pain, and irritable bowel syndrome. However, many studies focused on this issue due to the uncertainty of its pathogenic potential. The extracellular vesicles (EVs) are significant mediators for cellular communication, carrying biological molecules such as proteins, lipids, and nucleic acids. Compared with other parasites, little is known about the Blastocystis EVs. Hence the present investigation was done. Methods The Blastocystis parasites were cultured in the DMEM medium, and a 550–585 bp fragment was amplified using PCR, and sequencing was done. A commercial kit was used for exosome extraction and dynamic light scattering (DLS), flow cytometry (CD63, CD81 markers), and electron microscopy tests to determine their morphology. The human leukemia monocytic cell line (THP-1) was exposed to Blastocystis EVs. Next, the expression of proinflammatory and anti-inflammatory cytokines, including IL-4, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α), were measured using quantitative PCR. Results Exosomes were extracted from ST1-3 Blastocystis sp. According to the DLS assay, the size of the exosomes was in the range of 30–100 nm. Electron microscopy images and CD63 and CD81 markers also confirmed the exosome's size, structure, and morphology. According to real-time PCR results, ST1-derived exosomes caused IL-6 and TNF-α upregulation and IL-10 and IL-4 downregulation, ST2- and ST3-derived exosomes downregulated IL-10, and ST3-derived exosomes caused IL-6 upregulation. There is a statistically significant difference (P ≤ 0.05). Conclusion To our knowledge, this is the first report of the release of exosome-like vesicles by the human parasite, Blastocystis, and the provided information demonstrates the role of this parasite, particularly ST1 on proinflammatory and anti-inflammatory cytokines and navigating the host response.
Collapse
Affiliation(s)
- Mojtaba Norouzi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Majid Pirestani
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javid Sadraei
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wilcox JJS, Lopez-Cotto JJ, Hollocher H. Historical contingency, geography and anthropogenic patterns of exposure drive the evolution of host switching in the Blastocystis species-complex. Parasitology 2021; 148:985-993. [PMID: 33775262 PMCID: PMC11010051 DOI: 10.1017/s003118202100055x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/24/2021] [Accepted: 03/21/2021] [Indexed: 11/05/2022]
Abstract
Parasites have the power to impose significant regulatory pressures on host populations, making evolutionary patterns of host switching by parasites salient to a range of contemporary ecological issues. However, relatively little is known about the colonization of new hosts by parasitic, commensal and mutualistic eukaryotes of metazoans. As ubiquitous symbionts of coelomate animals, Blastocystis spp. represent excellent candidate organisms for the study of evolutionary patterns of host switching by protists. Here, we apply a big-data phylogenetic approach using archival sequence data to assess the relative roles of several host-associated traits in shaping the evolutionary history of the Blastocystis species-complex within an ecological framework. Patterns of host usage were principally determined by geographic location and shared environments of hosts, suggesting that weight of exposure (i.e. propagule pressure) represents the primary force for colonization of new hosts within the Blastocystis species-complex. While Blastocystis lineages showed a propensity to recolonize the same host taxa, these taxa were often evolutionarily unrelated, suggesting that historical contingency and retention of previous adaptions by the parasite were more important to host switching than host phylogeny. Ultimately, our findings highlight the ability of ecological theory (i.e. ‘ecological fitting’) to explain host switching and host specificity within the Blastocystis species-complex.
Collapse
Affiliation(s)
- Justin J. S. Wilcox
- Department of Biological Sciences, Galvin Life Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - John J. Lopez-Cotto
- Department of Biological Sciences, Galvin Life Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hope Hollocher
- Department of Biological Sciences, Galvin Life Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
4
|
Billy V, Lhotská Z, Jirků M, Kadlecová O, Frgelecová L, Parfrey LW, Pomajbíková KJ. Blastocystis Colonization Alters the Gut Microbiome and, in Some Cases, Promotes Faster Recovery From Induced Colitis. Front Microbiol 2021; 12:641483. [PMID: 33897648 PMCID: PMC8058373 DOI: 10.3389/fmicb.2021.641483] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Protists are a normal component of mammalian intestinal ecosystems that live alongside, and interact with, bacterial microbiota. Blastocystis, one of the most common intestinal eukaryotes, is reported as a pathogen that causes inflammation and disease, though health consequences likely vary depending on host health, the gut ecosystem, and genetic diversity. Accumulating evidence suggests that Blastocystis is by and large commensal. Blastocystis is more common in healthy individuals than those with immune mediated diseases such as Inflammatory Bowel Diseases (IBD). Blastocystis presence is also associated with altered composition and higher richness of the bacterial gut microbiota. It is not clear whether Blastocystis directly promotes a healthy gut and microbiome or is more likely to colonize and persist in a healthy gut environment. We test this hypothesis by measuring the effect of Blastocystis ST3 colonization on the health and microbiota in a rat experimental model of intestinal inflammation using the haptenizing agent dinitrobenzene sulfonic acid (DNBS). We experimentally colonized rats with Blastocystis ST3 obtained from a healthy, asymptomatic human donor and then induced colitis after 3 weeks (short term exposure experiment) or after 13 weeks (long term exposure experiment) and compared these colonized rats to a colitis-only control group. Across experiments Blastocystis ST3 colonization alters microbiome composition, but not richness, and induces only mild gut inflammation but no clinical symptoms. Our results showed no effect of short-term exposure to Blastocystis ST3 on gut inflammation following colitis induction. In contrast, long-term Blastocystis exposure appears to promote a faster recovery from colitis. There was a significant reduction in inflammatory markers, pathology 2 days after colitis induction in the colonized group, and clinical scores also improved in this group. Blastocystis colonization resulted in a significant reduction in tumor necrosis factor alpha (TNFα) and IL-1β relative gene expression, while expression of IFNγ and IL17re/17C were elevated. We obtained similar results in a previous pilot study. We further found that bacterial richness rebounded in rats colonized by Blastocystis ST3. These results suggest that Blastocystis sp. may alter the gut ecosystem in a protective manner and promote faster recovery from disturbance.
Collapse
Affiliation(s)
- Vincent Billy
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zuzana Lhotská
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South-Bohemia, České Budějovice, Czechia
| | - Milan Jirků
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Oldřiška Kadlecová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Lucia Frgelecová
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czechia
| | - Laura Wegener Parfrey
- Department of Zoology, Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Kateřina Jirků Pomajbíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South-Bohemia, České Budějovice, Czechia
| |
Collapse
|
5
|
Defaye M, Nourrisson C, Baudu E, Warwzyniak I, Bonnin V, Bonnet M, Barnich N, Ardid D, Delbac F, Carvalho FA, Poirier P. Efficient and reproducible experimental infections of rats with Blastocystis spp. PLoS One 2018; 13:e0207669. [PMID: 30452467 PMCID: PMC6242359 DOI: 10.1371/journal.pone.0207669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Although Blastocystis spp. infect probably more than 1 billion people worldwide, their clinical significance is still controversial and their pathophysiology remains poorly understood. In this study, we describe a protocol for an efficient and reproducible model of chronic infection in rats, laying the groundwork for future work to evaluate the pathogenic potential of this parasite. In our experimental conditions, we were unable to infect rats using vacuolar forms of an axenically cultivated ST4 isolate, but we successfully established chronic infections of 4 week-old rats after oral administration of both ST3 and ST4 purified cysts isolated from human stool samples. The infection protocol was also applied to 4 week-old C57BL/9, BALB/C and C3H mice, but any mouse was found to be infected by Blastocystis. Minimal cyst inoculum required for rat infection was higher with ST3 (105) than with ST4 (102). These results were confirmed by co-housing experiments highlighting a higher contagious potential of ST4 in rats compared to ST3. Finally, experiments mimicking fecal microbiota transfer from infected to healthy animals showed that Blastocystis spp. could easily infect a new host, even though its intestinal microbiota is not disturbed. In conclusion, our results provide a well-documented and robust rat model of Blastocystis chronic infection, reproducing "natural" infection. This model will be of great interest to study host parasite interactions and to better evaluate clinical significance of Blastocystis.
Collapse
Affiliation(s)
- Manon Defaye
- Université Clermont Auvergne, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
| | - Céline Nourrisson
- Université Clermont Auvergne, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- Université Clermont Auvergne, CHU, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
| | - Elodie Baudu
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
- Université Clermont Auvergne, 3iHP, Inserm U1071, USC INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Ivan Warwzyniak
- Université Clermont Auvergne, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
| | - Virginie Bonnin
- Université Clermont Auvergne, 3iHP, Inserm U1071, USC INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Mathilde Bonnet
- Université Clermont Auvergne, 3iHP, Inserm U1071, USC INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Nicolas Barnich
- Université Clermont Auvergne, 3iHP, Inserm U1071, USC INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Denis Ardid
- Université Clermont Auvergne, 3iHP, Inserm U1107, NeuroDol, Clermont-Ferrand, France
| | - Frédéric Delbac
- Université Clermont Auvergne, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
| | | | - Philippe Poirier
- Université Clermont Auvergne, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- Université Clermont Auvergne, CHU, 3iHP, CNRS, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
| |
Collapse
|
6
|
Růžková J, Květoňová D, Jirků M, Lhotská Z, Stensvold CR, Parfrey LW, Jirků Pomajbíková K. Evaluating rodent experimental models for studies of Blastocystis ST1. Exp Parasitol 2018; 191:55-61. [PMID: 29959915 DOI: 10.1016/j.exppara.2018.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 01/30/2023]
Abstract
Blastocystis is a common inhabitant of the human gut, colonizing at least one billion people at a prevalence ranging from <10% to 100% in healthy human populations globally. The majority of carriers remain asymptomatic, suggesting that Blastocystis is largely a commensal, though Blastocystis has also been implicated in disease in some people. However, there are no in vivo model systems in which to experimentally test the impact of Blastocystis on mammalian hosts and the gut ecosystem and determine which factors underlie these variable clinical outcomes. We evaluated a rat model for sustaining of a human-derived Blastocystis ST1 and assess colonization success and longevity. Because of the broad host range of Blastocystis, we compared the rat with three other rodent species to establish the reproducibility of our method. Blastocystis was introduced by esophageal gavage and colonization success evaluated by Blastocystis culture. Culture was also used to determine that all animals were negative prior to colonization and negative controls remain Blastocystis-free. In this study, Blastocystis ST1 established in 100% of the outbred rats (Rattus norvegicus) and gerbils (Meriones unguiculatus) challenged. Rats were colonized asymptomatically for more than one year, but Blastocystis ST1 was not transmitted between rats. Mus musculus strain CD1 and Mastomys coucha were not susceptible to Blastocystis ST1. Thus, rats appear to be a suitable in vivo model for studies of Blastocystis ST1, as do gerbils though testing was less extensive. This work lays the foundation for experimental work on the role of Blastocystis in health and disease.
Collapse
Affiliation(s)
- Jiřina Růžková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Branišovská 31, 370 05, Czech Republic.
| | - Dana Květoňová
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Branišovská 31, 370 05, Czech Republic.
| | - Milan Jirků
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Branišovská 31, 370 05, Czech Republic.
| | - Zuzana Lhotská
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Branišovská 31, 370 05, Czech Republic.
| | | | - Laura Wegener Parfrey
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada; Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.
| | - Kateřina Jirků Pomajbíková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Branišovská 31, 370 05, Czech Republic; Department of Medical Biology, Faculty of Science, University of South-Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
7
|
Ajjampur SSR, Tan KSW. Pathogenic mechanisms in Blastocystis spp. - Interpreting results from in vitro and in vivo studies. Parasitol Int 2016; 65:772-779. [PMID: 27181702 DOI: 10.1016/j.parint.2016.05.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 01/20/2023]
Abstract
Blastocystis spp. are commonly reported intestinal protists but whose clinical significance remains controversial. Infections have ranged from asymptomatic carriage to non-specific gastrointestinal symptoms and have also been linked to irritable bowel syndrome and urticaria in some patient populations. In vitro studies showed that both parasite and parasite lysates have damaging effects on intestinal epithelial cells causing apoptosis and degradation of tight junction proteins occludin and ZO1, resulting in increased intestinal permeability. Adhesion of trophic forms to the intestinal epithelium and release of cysteine proteases appear to be the major triggers leading to pathogenesis. Two putative virulence factors identified are cysteine proteases legumain and cathepsin B. Blastocystis spp. also have immuno-modulatory effects including degradation of IgA, inhibition of iNOS and upregulation of proinflammatory cytokines, IL8 and GM-CSF in intestinal epithelial cells and IL1β, IL6 and TNFα in murine macrophages. Blastocystis spp. have also been reported to dampen response to LPS in intestinal epithelial cells and monocytes. Studies in rodent models and naturally infected pigs have shown that the parasite localizes to the lumen and mucosal surface of the large intestine mostly in the caecum and colon. The parasite has been found to cause mucosal sloughing, increase in goblet cell mucin, increased intestinal permeability and to induce a pro-inflammatory cytokine response with upregulation of TNFα, IFNγ and IL12. In this review, we summarize findings from in vitro and in vivo studies that demonstrate pathogenic potential but also show considerable inter and intra subtype variation, which provides a plausible explanation on the conflicting reports on clinical significance.
Collapse
Affiliation(s)
- Sitara S R Ajjampur
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, National University of Singapore, Singapore
| | - Kevin S W Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Wang W, Bielefeldt-Ohmann H, Traub RJ, Cuttell L, Owen H. Location and pathogenic potential of Blastocystis in the porcine intestine. PLoS One 2014; 9:e103962. [PMID: 25093578 PMCID: PMC4122384 DOI: 10.1371/journal.pone.0103962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/07/2014] [Indexed: 02/04/2023] Open
Abstract
Blastocystis is an ubiquitous, enteric protozoan of humans and many other species. Human infection has been associated with gastrointestinal disease such as irritable bowel syndrome, however, this remains unproven. A relevant animal model is needed to investigate the pathogenesis/pathogenicity of Blastocystis. We concluded previously that pigs are likely natural hosts of Blastocystis with a potentially zoonotic, host-adapted subtype (ST), ST5, and may make suitable animal models. In this study, we aimed to characterise the host-agent interaction of Blastocystis and the pig, including localising Blastocystis in porcine intestine using microscopy, PCR and histopathological examination of tissues. Intestines from pigs in three different management systems, i.e., a commercial piggery, a small family farm and a research herd (where the animals were immunosuppressed) were examined. This design was used to determine if environment or immune status influences intestinal colonisation of Blastocystis as immunocompromised individuals may potentially be more susceptible to blastocystosis and development of associated clinical signs. Intestines from all 28 pigs were positive for Blastocystis with all pigs harbouring ST5. In addition, the farm pigs had mixed infections with STs 1 and/or 3. Blastocystis organisms/DNA were predominantly found in the large intestine but were also detected in the small intestine of the immunosuppressed and some of the farm pigs, suggesting that immunosuppression and/or husbandry factors may influence Blastocystis colonisation of the small intestine. No obvious pathology was observed in the histological sections. Blastocystis was present as vacuolar/granular forms and these were found within luminal material or in close proximity to epithelial cells, with no evidence of attachment or invasion. These results concur with most human studies, in which Blastocystis is predominantly found in the large intestine in the absence of significant organic pathology. Our findings also support the use of pigs as animal models and may have implications for blastocystosis diagnosis/treatment.
Collapse
Affiliation(s)
- Wenqi Wang
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- * E-mail:
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Rebecca J. Traub
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Leigh Cuttell
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Helen Owen
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
9
|
Roberts T, Stark D, Harkness J, Ellis J. Update on the pathogenic potential and treatment options for Blastocystis sp. Gut Pathog 2014; 6:17. [PMID: 24883113 PMCID: PMC4039988 DOI: 10.1186/1757-4749-6-17] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/15/2014] [Indexed: 12/23/2022] Open
Abstract
Although Blastocystis is one of the most common enteric parasites, there is still much controversy surrounding the pathogenicity and potential treatment options for this parasite. In this review we look at the evidence supporting Blastocystis as an intestinal pathogen as shown by numerous case studies and several in vivo studies and the evidence against. We describe the chronic nature of some infections and show the role of Blastocystis in immunocompromised patients and the relationship between irritable bowel syndrome and Blastocystis infection. There have been several studies that have suggested that pathogenicity may be subtype related. Metronidazole is the most widely accepted treatment for Blastocystis but several cases of treatment failure and resistance have been described. Other treatment options which have been suggested include paromomycin and trimethroprim- sulfamethoxazole.
Collapse
Affiliation(s)
- Tamalee Roberts
- Department of Microbiology, St. Vincent's Hospital, Victoria St, Darlinghurst 2010, NSW, Australia ; School of Medical and Molecular Biosciences, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Damien Stark
- Department of Microbiology, St. Vincent's Hospital, Victoria St, Darlinghurst 2010, NSW, Australia
| | - John Harkness
- Department of Microbiology, St. Vincent's Hospital, Victoria St, Darlinghurst 2010, NSW, Australia
| | - John Ellis
- School of Medical and Molecular Biosciences, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
El Safadi D, Gaayeb L, Meloni D, Cian A, Poirier P, Wawrzyniak I, Delbac F, Dabboussi F, Delhaes L, Seck M, Hamze M, Riveau G, Viscogliosi E. Children of Senegal River Basin show the highest prevalence of Blastocystis sp. ever observed worldwide. BMC Infect Dis 2014; 14:164. [PMID: 24666632 PMCID: PMC3987649 DOI: 10.1186/1471-2334-14-164] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/19/2014] [Indexed: 02/09/2024] Open
Abstract
Background Blastocystis sp. is currently the most common intestinal protist found in human feces and considered an emerging parasite with a worldwide distribution. Because of its potential impact in public health, we reinforced the picture of Blastocystis sp. prevalence and molecular subtype distribution in Africa by performing the first survey of this parasite in Senegal. Methods Stool samples from 93 symptomatic presenting with various gastrointestinal disorders or asymptomatic children living in three villages of the Senegal River Basin were tested for the presence of Blastocystis sp. by non-quantitative and quantitative PCR using primer pairs targeting the SSU rDNA gene. Positive samples were subtyped to investigate the frequency of Blastocystis sp. subtypes in our cohort and the distribution of subtypes in the symptomatic and asymptomatic groups of children. Results By the use of molecular tools, all 93 samples were found to be positive for Blastocystis sp. indicating a striking parasite prevalence of 100%. Mixed infections by two or three subtypes were identified in eight individuals. Among a total of 103 subtyped isolates, subtype 3 was most abundant (49.5%) followed by subtype 1 (28.2%), subtype 2 (20.4%) and subtype 4 (1.9%). Subtype 3 was dominant in the symptomatic group while subtypes 1 and 2 were detected with equal frequency in both symptomatic and asymptomatic groups. The distribution of subtypes was compared with those available in other African countries and worldwide. Comparison confirmed that subtype 4 is much less frequently detected or absent in Africa while it is commonly found in Europe. Potential sources of Blastocystis sp. infection including human-to-human, zoonotic, and waterborne transmissions were also discussed. Conclusions The prevalence of Blastocystis sp. in our Senegalese population was the highest prevalence ever recovered worldwide for this parasite by reaching 100%. All cases were caused by subtypes 1, 2, 3 and 4 with a predominance of subtype 3. More than half of the children infected by Blastocystis sp. presented various gastrointestinal disorders. Such high prevalence of blastocystosis in developing countries makes its control a real challenge for public health authorities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Eric Viscogliosi
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille (CIIL), Inserm U1019, CNRS UMR 8204, Université Lille Nord de France, 1 rue du Professeur Calmette, BP 245, 59019 Lille cedex, France.
| |
Collapse
|